
Forming an Effective Multi-Robot Team Robust to Failures

Somchaya Liemhetcharat and Manuela Veloso
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

som@ri.cmu.edu and veloso@cs.cmu.edu

Abstract— We are interested in forming a multi-robot team
that attains high utility at a task, and is robust to failures in
the robots. We consider configurable robots that are composed
of modules, e.g., motors, sensors, and actuators, where each
module has an independent probability of failure. The perfor-
mance of the multi-robot team at the task depends not only
on how the robots in the team are composed from modules,
but also the probability of failure of the selected modules.
We formally define the robust team formation problem, and
introduce two methods of defining the optimal team. We
contribute the Robust Synergy Graph for Configurable Robots
(ρ-SGraCR) model, and two team formation algorithms to find
effective robust teams. The first algorithm, OptRobust, runs
in exponential time and finds the optimal robust team. The
second algorithm, ApproxRobust, makes assumptions about the
module failures and approximates the optimal robust team,
and runs in polynomial time. We demonstrate the efficacy of
the ρ-SGraCR model in modeling robust team performance,
and evaluate ApproxRobust and OptRobust. Finally, we apply
the ρ-SGraCR model to a real robot problem in the foraging
domain, and show that it outperforms competing approaches.

I. INTRODUCTION
Multi-robot teams provide redundancy so that the failure

of a single robot does not completely stop the task from being
performed. Previous work in robustness, that we detail in the
related work section, has focused on coordination algorithms
that are robust to failures. We are interested in forming robust
multi-robot teams, using robots that are pre-defined with such
coordination algorithms.

We consider configurable robots that are composed from
modules such as motors, sensors and actuators. The failure
of a module in a robot is modeled as a change in its
composition, e.g., a robot with a wheeled base module and a
radio module that experiences a failure in the radio module
becomes a wheeled base module with no radio module.
A multi-robot team is a set of such robots. We assume
that module failures occur after the forming of the team
(i.e., selecting the modules in each robot), but before the
task is performed. Hence, the performance of a multi-robot
team depends on the selected composition of modules in the
robots, and the probability of module failures.

Our goal is to select the modules of every robot in the
team, such that the performance of the team is robust even
with failures in some modules. This general robust team
formation problem is applicable to many robot domains,
especially since robots are becoming increasingly modular.
An example domain is foraging, where the goal is to search
for and retrieve resources; modules include sensors that de-
tect the resources and manipulators to forage them. Another
example is missions in space, where the goal is to configure
a multi-robot team to perform some mission in a remote

location such as construction or exploration; modules include
scientific instruments, manipulators and wheels.

In this paper, we differentiate between team capability
and performance. Team capability is the utility attained by
the team assuming all modules function successfully. Team
performance is the distribution of utilities of the team, taking
into account potential failures. We formally define the robust
team formation problem, and contribute two methods of
defining the optimal robust team: the risk-adverse optimal
team and the risk-controlled optimal team.

To solve the robust team formation problem, we contribute
the Robust Synergy Graph for Configurable Robots (ρ-
SGraCR) model. ρ-SGraCR models the synergy (i.e., capa-
bility) between modules in a robot, as well as across robots.
Using the module failure rate and synergy, the ρ-SGraCR
model computes team performance. We contribute two robust
team formation algorithms, OptRobust and ApproxRobust.
OptRobust computes the optimal robust team of a given size
in exponential time; ApproxRobust approximates the optimal
robust team in polynomial time.

We evaluate the ρ-SGraCR model and robust team forma-
tion algorithms with extensive experiments. First, we show
that the ρ-SGraCR model is capable of modeling domains
where robustness increases with redundancy, as well as in
domains where increasing the number of robots decreases
robustness. Next, we compare OptRobust and ApproxRobust,
and show that ApproxRobust finds effective robust multi-
robot teams while running in polynomial time. We apply the
ρ-SGraCR model to a real robot experiment in the foraging
domain using Lego NXTs, CreBots (TurtleBots with CoBot
software), and Aldebaran NAOs. We learn the ρ-SGraCR
from experimental data, and use the learned model to form
effective multi-robot teams that are robust to failure, and
show that it outperforms competing approaches.

II. RELATED WORK

One approach to modeling robot capabilities is to model
robots and tasks as lists of services or resources [2], [3],
and a multi-robot team is defined to be feasible to complete
a task if the union of services/resources covers the task
requirements. However, such approaches view multi-robot
capabilities as whether a team can or cannot perform a
task, e.g., [4]. We are interested in problems where the task
performance varies as a function of the team composition.

Research in multi-robot robustness has mostly focused on
coordination algorithms that are robust to failures, e.g., co-
ordination strategies using self-organization and self-healing
that complete a task even with robot failures [5]. Other ex-

amples include a distributed algorithm that increase failure-
detection and robustness [6], and a multi-robot data associa-
tion technique that improves performance in SLAM [7]. We
are interested in forming a robust multi-robot team where
the behaviors and coordination strategies of the robots are
pre-defined — our approach forms the team that maximizes
robustness given such algorithms.

Redundancy has been used to form robust multi-robot
teams. Redundancy allows the team to stay in desired states
when some robots fail [8], and ensures that at least one of the
agents completes the task before a deadline [9]. We model
and consider how the performance of the team varies with
possible failures, in order to find a robust team.

III. PROBLEM DEFINITION AND APPROACH

There is a complex task to be completed, and a robust
multi-robot team is to be formed to perform the task. The
goal is to form a robust team in the face of potential failures
in the robots. To aid in the explanation of the problem, we
will use a consistent motivating scenario. Suppose that the
task is to forage resources from the environment.

The set of modules is M =M1 ∪ . . . ∪MN , where each
Mn is a set of modules of a certain type. A configurable robot
R is a configuration of N modules, i.e., R = (m1, . . . ,mN)
where each mn ∈ Mn. Hardware and software failures can
occur, and we model the probability of success of modules:

Definition 3.1: The probability of success 0 ≤ pm ≤ 1
of a module m ∈M is the probability that module m does
not experience a failure.

Definition 3.2: The fall-back module m∗n of type
n ∈ {1, . . . , N} is a module that never fails, i.e., pm∗n = 1,
and is the module that a robot R = (m1, . . . ,mN) uses if
it experiences a failure of module mn.

For example, the robot R = (m1, . . . ,mN) becomes
R = (m∗1,m2, . . . ,mN) if module m1 fails. In the
foraging example, N = 4, where M1 are motors, M2 are
sensors, M3 are manipulators, and M4 are robot bases. Let
R = (mfast,mcamera,m

∗
no manipulator,mwheeled) be an example

of a wheeled robot capable of moving fast and detecting
resources with its camera, but is unable to manipulate them.
Fall-back modules can be defined to indicate the absence of
something (e.g., mno base,mno manipulator) or provide a baseline
module (e.g., mslow for motors).

The probabilities pm are independent, and multiple copies
of the same module are also independent. For example, if
R1 = (m,m′) and R2 = (m,m′′), a failure of m on R1 is
independent of a failure of m′ in R1, m and m′′ in R2.

The set of modules M and failure probabilities pm are
domain-specific and given as part of the problem description.
The type of modules would typically be categorized by phys-
ical constraints (e.g., which modules can be physically placed
simultaneously on a robot), and the success probabilities are
determined by the mean time to failure of the hardware, or
by experimentally determining the rates of failure.
R is the set of all robots, and T = (R1, R2, . . .) ∈ T is a

multi-robot team. A robot uses a fall-back module whenever
a failure occurs in one of its modules.

Definition 3.3: The set of alternative robots AR(R) of
a robot R = (m1, . . . ,mN) is AR(R) = "Nn=1 {mn,m

∗
n}.

Definition 3.4: The set of alternative teams AT (T) of a
team T = (R1, R2, . . .) is AT (T) = "R∈T AR(R).

Definition 3.5: The probability of occurrence of a robot
R′ ∈ AR(R) is:

P(R′, R) =
∏

mn∈R

{
pmn if mn ∈ R′

1− pmn
otherwise

Definition 3.6: The probability of occurrence of a team
T ′ = (R′1, R

′
2, . . .) ∈ AT (T) is:

P(T ′, T) =
∏

R′n∈T ′
P(R′n, R)

Definition 3.7: The capability CT of a team T ∈ T is
the non-deterministic utility attained by T assuming that no
failures occur in the modules of the robots comprising T .

Definition 3.8: The performance PT of a team T ∈ T
is the non-deterministic utility attained by T taking possi-
ble failures into account, and is a mixture model of the
capabilities of the set of alternative teams of T : PT has
|AT (T)| components, where each component T ′ ∈ AT (T)
has probability P(T ′, T) and distribution CT ′ .

The robots act in a dynamic world where their actions have
non-deterministic outcomes. CT captures the performance
due to the non-determinism in the world, e.g., wheel slippage
causing a robot to arrive at a destination at a slower pace,
and PT captures both the non-determinism and the effects
of failures. CT and PT are initially unknown, but some
observations oT of CT are available.

Definition 3.9: The robustness ρ(T, u) of a team T ∈ T
is the probability that the performance PT is at least a
threshold utility threshold u: ρ(T, u) = P(PT ≥ u).

Not all multi-robot teams are capable of completing
the task, e.g., as a trivial example, a robot team where
all the modules have failed cannot complete any task.
F : T → {0, 1} is the feasibility function, where
F (T) = 1 iff the team T can complete the task. The
feasibility function F is domain-specific and given.

Definition 3.10: The risk-averse optimal team T ∗adv is
the team that has maximum robustness given a threshold
threshold uthresh: T ∗adv = argmaxT∈T s.t. F (T)=1ρ(T, uthresh).

Definition 3.11: The risk-controlled optimal team T ∗con
is the team with the highest utility with probability pcon:
T ∗con = argmaxT∈T s.t. F (T)=1 {uT |ρ(T, uT) = pcon}.

The risk-averse optimal team and risk-controlled optimal
team are two sides of the same coin — the former maxi-
mizes robustness given a utility threshold, while the latter
maximizes utility given a desired robustness. The problem
domain determines whether the goal is to form the risk-
averse optimal team or the risk-controlled optimal team (and
the associated parameters uthresh and pcon respectively).

We recently introduced the Synergy Graph for Config-
urable Robots (SGraCR) model [1], and we extend the
SGraCR model to solve the robust team formation problem:

1) Use observations oT of CT to learn a SGraCR
2) Augment the learned SGraCR with pm to form the

ρ-SGraCR model
3) Form the optimal robust team using the ρ-SGraCR

IV. MULTI-ROBOT CAPABILITY AND PERFORMANCE

The Synergy Graph for Configurable Robots (SGraCR)
models the capability of configurable robots acting together
in a multi-robot team [1]. We augment the SGraCR model
to form the ρ-SGraCR model:

Definition 4.1: The Robust Synergy Graph for Config-
urable Robots model is a tuple {G,C}, where:
• G = (V,E) is a connected weighted graph;
• Each vertex vm ∈ V represents a module m ∈M;
• Each vertex vm ∈ V is associated with a success

probability pm ∈ [0, 1];
• e = (vm, vm′ , wintra, winter) ∈ E is an edge with two

integer weights: wintra is the weight between modules
on the same robot (intra-robot weight); winter is the
weight between modules on different robots (inter-robot
weight);

• em = (vm, vm, winter) ∈ E is a self-looping edge with
a single inter-robot weight;

• C =
{
C1, . . . , C|M|

}
is a set of module capabilities,

where Cm ∼ N (µm, σ
2
m) is the capability of m ∈M.

A. Computing Team Capability
Using the ρ-SGraCR model, we compute the capability

of a multi-robot team, i.e., the utility attained by the team
assuming that all modules are functional. We use the intra-
robot synergy and inter-robot synergy functions [1]:

Definition 4.2: The intra-robot synergy Sintra(R) of a
robot R = (m1, . . . ,mN) is:

Sintra(R) =
∑

mi,mj∈R
φ(dintra(vmi , vmj))(Cmi + Cmj)

where Cmi
and Cmj

are the module capabilities of mi and
mj respectively, and dintra(vmi

, vmj
) is the shortest intra-

robot distance between vertices vmi
and vmj

.
Definition 4.3: The inter-robot synergy Sinter(R,R

′) of
two robots R = (m1, . . . ,mN) and R′ = (m′1, . . . ,m

′
N) is:

Sinter(R,R
′) =

∑
mi∈R,m′j∈R′

φ(dinter(vmi
, vm′j))(Cmi

+Cm′j)

where Cmi
and Cm′j are the module capabilities of mi and

m′j respectively, and dinter(vmi
, vm′j) is the shortest inter-

robot distance between vertices vmi
and vm′j .

φ : Z+ → R+ is a compatibility function that converts
distances in the SGraCR graph to real valued compability.
φ is a monotonically non-increasing function, so larger
distances indicate lower compatibility.

To compute the capability of the entire multi-robot team,
we use the synergy function [1]:

Definition 4.4: The synergy of a multi-robot team is:

S(T) =
1

|T |
∑
R∈T

Sintra(R) +
1(|T |
2

) ∑
R,R′∈T

Sinter(R,R
′)

The synergy of the multi-robot team, i.e., its capability, is
the average of the intra-robot synergy of the robots in the
team, and the average of the intra-robot synergy between
pairs of robots in the team. The synergy function uses the
average, so as to prevent a bias towards larger teams having
higher capabilities. Thus, S(T) aims to model C(T), the
initially unknown capability of team T ∈ T .

V. FORMING A ROBUST MULTI-ROBOT TEAM

The SGraCR learning algorithm is general and does not
require any domain-specific information, only observations
oT of CT . Full details of the SGraCR model and learning
algorithm are provided in [1]. From the learned SGraCR, we
augment each vertex (that represents a robot module) with
the probability of success pm to form the Robust Synergy
Graph for Configurable Robots (ρ-SGraCR) model. In this
section, we contribute two team formation algorithms that
use the ρ-SGraCR model to form a robust multi-robot team.

In our description below, we assume that the
goal is to find the risk-adverse optimal team
given a minimum threshold uthresh, i.e., to find
T ∗adv = argmaxT∈T s.t. F (T)=1ρ(T, uthresh). The algorithms
would only have to be modified slightly to find the
risk-controlled optimal team.

Our first team formation algorithm, OptRobust, computes
the optimal robust multi-robot team of size K. It is assumed
that K is known, otherwise the algorithm is run iteratively
for increasing K. Algorithm 1 shows the pseudo-code of
OptRobust. The algorithm first generates all possible multi-
robot teams comprising K robots. Next, the algorithm uses
the synergy function S to compute the multi-robot team
capability for all possible teams T and computes its score
(based on the optimality function). To compute ρ(T, uthresh),
all combinations in A(T) have to be considered:

ρ(T, uthresh) =
∑

T ′∈A(T)

P(T ′)P(S(T ′) ≥ uthresh)

The number of teams of K robots is |TK | = O(|M |KN)
and |A(T)| = O(2KN), where M is the total number of
modules, and N is the number of modules in a robot, and
so Algorithm 1 runs in exponential time.

Algorithm 1 Find the optimal robust team with K robots
OptRobust(K)

1: TK ← GenerateTeams(M,K)
2: for all T ∈ TK do
3: Score(T)← P(S(T) ≥ uthresh)
4: for all T ∈ TK do
5: ρ(T, uthresh)←

∑
T ′∈A(T) P(T ′, T)Score(T ′)

6: T ∗ ← argmaxT∈TKρ(T, uthresh)
7: return T ∗

Since finding the optimal robust team takes exponential
time, we contribute ApproxRobust, an algorithm that ap-
proximates the optimal robust team of size K and runs in
polynomial time. Simulated annealing is performed to limit
the number of teams considered; instead of considering all
possible teams of size K, only kmax iterations of simulated
annealing is run. The size of kmax should be sufficient to
properly explore the space of robots.

The function ApproxScore(T) is used to approximates
the score of a team T , by using the optimality function
(e.g., ρ for risk-adverse optimality), and only considers 3
cases: the function assumes that either none of the modules
in a robot team fail, a fixed number Nfail of the modules fail,

No penalty Fall-back penalty
of robots OptRobust Average team OptRobust Average team

1 0.577± 0.251 0.272± 0.181 0.249± 0.169 0.067± 0.052
2 0.623± 0.307 0.248± 0.231 0.134± 0.179 0.008± 0.016
3 0.653± 0.345 0.235± 0.273 0.103± 0.182 0.002± 0.006
4 0.672± 0.365 0.231± 0.300 0.089± 0.187 0.001± 0.003

TABLE I: The optimal robustness scores of teams with 1
robot (3 modules) to 4 robots (12 modules).

or all of them fail (selecting a value for Nfail is dependent
on the domain and module failure probabilities). Hence,
only

(
NK
Nfail

)
+ 2 combinations of teams are considered in

A′(T) ⊂ A(T) and significantly reduces the computational
time, albeit for an approximation of the true team score:

ApproxScore(T)← 1

η

∑
T ′∈A′(T)

P(T ′, T)P(S(T) ≥ uthresh)

where η =
∑
T ′∈A′(T) P(T ′), so 1

η is a normalizing factor.

VI. EXPERIMENTS AND RESULTS

We evaluate our model and algorithms using synthetic
data and data from real robot experiments. We use the risk-
adverse optimality below, and we believe our results and
analysis will be similar for risk-controlled optimality.

A. Evaluating the ρ-SGraCR Model

In our first set of experiments, we use our ρ-SGraCR
model to evaluate if our team performance model sufficiently
solves the robust team formation problem. To do so, we gen-
erated 100 random instances of the ρ-SGraCR model, using
3 types of modules with 3 modules each, with randomly
created module capabilities and compatibility.

We used two different settings to generate the module
capabilities, no penalty and fall-back penalty. In the no
penalty setting, all 9 module capability means were uni-
formly sampled from [50, 150] and variances were uniformly
sampled from [0, 1002]. In the fall-back penalty setting, the
3 fall-back modules (1 for each type) had means set to 0 and
variances set to 1002, while other modules had means and
variances sampled from [50, 150] and [0, 1002] as before. The
fall-back penalty setting assigns the lowest capability to fall-
back modules, while the no penalty setting has no penalties
on any modules. We were interested to see if the settings
would affect the optimal robust team found.

We ran the OptRobust team formation algorithm to find the
optimal robust team, from a size of 1 robot (3 modules) to 4
robots (12 modules). Table I shows the scores of the optimal
teams of a fixed size. In the no penalty setting, increasing the
number of robots in the team generally improves its robust-
ness (the probability of at least attaining the performance
threshold), while in the fall-back penalty setting, increas-
ing the number of robots in the team generally decreases
its robustness. The results are interesting as it shows that
increasing redundancy does not always improve robustness.
Increasing the number of robots increases the likelihood
that some of them are functional, but also increases the
probability that some module(s) will fail and lower the team
performance. As such, in the fall-back penalty setting, this
causes the overall team score to decrease.

No penalty Fall-back penalty
of robots ApproxRobust Difference to optimal ApproxRobust Difference to optimal

1 0.565± 0.258 0.012± 0.030 0.239± 0.171 0.011± 0.021
2 0.543± 0.322 0.080± 0.103 0.109± 0.161 0.026± 0.039
3 0.556± 0.360 0.098± 0.138 0.067± 0.132 0.036± 0.077
4 0.531± 0.386 0.141± 0.190 0.042± 0.107 0.047± 0.104

TABLE II: The robustness scores of teams formed by Ap-
proxRobust compared to the optimal team.

Thus, the ρ-SGraCR model is capable of modeling in-
stances where the redundancy does (in the no penalty setting)
or does not (in the fall-back penalty setting), or somewhere
in between (where fall-back modules have a fraction of the
other modules’ capabilities), demonstrating its expressive-
ness in the space of robust team formation problems.

B. Comparing the OptRobust and ApproxRobust Algorithms

Our second set of experiments compares the two robust
team formation algorithms, OptRobust and ApproxRobust.
These experiments analyze how well the approximation algo-
rithm performs compared to the optimal team. Similar to the
previous experiments, we generated 100 random instances of
ρ-SGraCR models, with 3 module types of 3 modules each
in the no penalty and fall-back penalty settings.

We used both robust team formation algorithms to com-
pose a multi-robot team of 1 to 4 robots. For example, there
are 3654 possible 3-robot teams, and ApproxRobust only
searched 1000 teams with simulated annealing, so less than
1
3 of the space was considered. Further, as an approximation,
ApproxRobust assumes that all modules do not fail, Nfail = 4
fail, or all fail, and does not consider cases in between.

Table II shows the results of our experiments. The score
(the probability of at least attaining a performance threshold)
of the optimal team is higher than that of the team found
by ApproxRobust, but the difference between the scores is
small, which shows that ApproxRobust performs extremely
well considering its approximations and its lower runtime.

C. Application on Real Robots

We applied our ρ-SGraCR model to real robots in the
foraging domain, to demonstrate its efficacy and relevance to
real robot scenarios. We used three types of robot platforms:
Lego NXTs, CreBots, and Aldebaran NAO humanoid robots.
The CreBots are iRobot Creates with TurtleBot hardware
running our CoBot software. We chose these robots as they
represent a spectrum from being easily reconfigurable (NXT)
to being difficult to reconfigure (NAO).

1) The Foraging Task: The task of the multi-robot team
was to forage wooden blocks to two stockpiles. Fig. 1 shows
the setup of the experiment. There were 9 wooden blocks
(resources to forage) in total, belonging to two types: colored
(i.e., yellow, blue, and orange) and uncolored (i.e., regular
brown). One of the blocks was located inside a small tunnel
that was accessible only by NXTs, and two of the blocks
were placed on top of the tunnel and released only when a
CreBot or NAO was nearby. We set up these three blocks as
“bonus” resources that can be foraged only when the right
robot is included in the team.

The stockpiles on the left side of the field was for
uncolored blocks, and the right for colored blocks. The robots

Fig. 1: The setup of the foraging experiment showing the
initial robot positions and wooden block positions. Uncol-
ored and colored wooden blocks are to be foraged to their
respective stockpiles on the left and right sides of the field.

had three minutes to complete the task, and their utility was:

Utility = Ug · (|Bg,c|+ |Bg,i|) + Ud · (|Bd,c|+ |Bd,i|) (1)

+
∑
b∈Bg,c

Ut(ttotal − tb) +
∑
b∈Bd,c

Ut(ttotal + tdrop − tb)

where Ug and Ud are the utilities for foraging blocks on
the ground and blocks that were dropped respectively, and
Ut converts time in seconds into utilities. The first subscript
(g/d) of B indicates the initial position of the block (ground,
dropped), and the second subscript (c/i) indicates if the
block was foraged to the correct stockpile (correct, incorrect).
Blocks foraged to the correct stockpile received a time bonus
based on the time remaining when the block was foraged.

2) Robot Types and Behaviors: We used three robot
platforms (NXT, CreBot and NAO), and defined the mod-
ules as follows. M1 = {normal∗, fast} were the mo-
tors, where all platforms could use their normal mo-
tors, and the NXT had the option of faster motors.
M2 = {no comm∗, comm} was the communication mod-
ules, that allowed the robots to communicate and coordinate.
M3 = {no localization∗, global localization} was the
localization module, that allowed the NXTs and CreBots to
know their global (x, y) position (the NAOs could not have
the global localization module). Lastly, to differentiate the
robot platforms, M4 = {none∗,NXT,CreBot,NAO}, where
none indicated a failed/non-existent robot (explained later).
The superscript ∗ indicates that a module is the fall-back
module of its type, i.e., it has a success probability of 1, and
if another module fails, the robot uses the fall-back module.

Only two robots (4× 2 = 8 modules) performed the task
at each trial. Robot teams are able to communicate only if
both of them have communication modules.

The behaviors of the robots depend greatly on the con-
figuration of the team. Generally, the NXTs would perform
line following to forage the blocks on the lines connecting
the two stockpiles (A, B, and C in Fig. 1), and would also
forage the blocks at the disconnected lines if they had global
localization. The CreBot and NAO robots would drop the
blocks at the start of the trial; if they could communicate
with the NXT, then they would coordinate with the NXT
to maximize tdrop in Equation 1. The CreBot would forage
the block closest to its initial location, and other blocks if

it had global localization; the NAO does not forage any
blocks. The robots did not know which blocks were colored
or uncolored, unless a NAO was on the team and both robots
had communication modules.

The learning of the ρ-SGraCR model and the formation of
the robust team does not require any information about the
behaviors of the robots — only the module success probabil-
ities and observations of the team utilities are necessary. If
the behaviors were changed, the teams would attain different
utilities and a new ρ-SGraCR model would be learned.

3) Experimental Setup: Since it is difficult to get robot
modules to fail on demand at the desired failure rate, we
instead ran the foraging trials assuming modules were always
successful, and did the analysis of module failures separately.
With the modules defined in the previous subsection, there
were 14 unique robot configurations (8 NXTs, 4 CreBots,
and 2 NAOs) with 84 feasible two-robot teams and 8 feasible
one-robot teams. Teams were considered feasible if there was
at least 1 NXT in the team. The goal was to form a robust
two-robot team, but a two-robot team can become a one-
robot team if the robot base module fails on one of them.

We performed 30 trials in the foraging experiments to enu-
merate all the feasible teams. Only 30 trials were necessary
since the robot behaviors did not always change based on the
module configuration, e.g., a team with both robots having
no communication modules performs identically to a team
where one robot has the communication module.

We then performed 10-fold cross validation, where 90%
of the training data (utilities of teams) was used to learn a
ρ-SGraCR model, and the learned model is used to form
the risk-adverse team. We set the performance threshold to
be 700 for the trials, which is slightly less than the mean
utility attained by the teams. We used the ApproxRobust team
formation algorithm, where Nfail = 4. We only used Approx-
Robust as the optimal algorithm OptRobust is infeasible to
be run in general problems due to its exponential runtime.

To compare the performance of our model and algorithm,
we used two benchmarks. First, we used a highest utility
heuristic, that computed the robustness score of the team
that attained the highest utility (i.e., the team that had the
best utility assuming no modules failed). Second, we used a
market-based technique where each module bid using the
utility attained from the training data and module failure
probabilities:

Bid(m) =
∑

T s.t. m∈T

1

η
P(T) · Utility(T)

where 1
η is a normalizing factor.

4) Results and Analysis: Fig. 2 shows the results of our
robot experiments, where the dark blue line indicates the
median, the top and bottom of the box represent the 75th

and 25th percentiles respectively, and the top and bottom
whiskers represent the maximum and minimum values. The
robustness scores of all the teams were distributed between 0
(worst team) and 0.64 (optimal team), with a median of 0.06
(the 25th percentile and 0th percentile are equal, so there is
no bottom whisker for the distribution of all the teams).

Fig. 2: The robustness scores of teams formed by ρ-SGraCR
and competing approaches. The dark blue line indicates the
median, the top and bottom of the box represent the 75th and
25th percentiles, and the top and bottom whiskers represent
the maximum and minimum values.

ρ-SGraCR formed a team with a median robustness of
0.48, with the 25th percentile also at 0.48. The 75th per-
centile and maximum value are 0.64, which is the robustness
of the optimal team of this experiment (and hence ρ-SGraCR
has no top whisker in Fig. 2); ρ-SGraCR found the optimal
team in 4 of the 10 trials. The market-based algorithm always
found the same team that had a robustness score of 0.43 (and
so the market-based algorithm has no box or whiskers). ρ-
SGraCR outperformed the market-based algorithm in 8 of
the 10 trials (the other 2 trials had robustness scores of 0.42
and 0.26). The highest-utility heuristic, i.e., picking the team
that attained the highest utility, had a score of 0.17 in 9 of
the 10 trials and 0.14 in 1 trial (and hence there is no box
for the highest-utility heuristic).

Thus, ρ-SGraCR outperforms the competing market-based
algorithm and highest-utility heuristic (with p-values of 0.025
and 0.000005 respectively using a one-tailed paired Student’s
t-test), and found the optimal robust team 40% of the time.
In 9 of the 10 trials, the team formed is above the 75th
percentile, which reflects that the ρ-SGraCR model effec-
tively modeled the team performance and formed good robust
teams. As such, our results demonstrate that ρ-SGraCR is
well-suited to model the performance of robust multi-robot
teams in challenging scenarios where the optimal team is
difficult to compute a priori.

VII. CONCLUSIONS

Forming an effective multi-robot team to perform a com-
plex task is difficult, especially when robots may experience
failure. We defined the robust team formation problem, where
robots are configured by selecting modules, and each module
has an independent success rate. The performance of the
multi-robot team then depends on the team’s capability (the
utility the team receives if all the modules function) and the
probability of failure. We introduced two optimality criteria
for the robust team formation problem, risk-averse optimality
and risk-controlled optimality.

We contributed the Robust Synergy Graph for Config-
urable Robots (ρ-SGraCR) model, that is an extension of

the SGraCR model we introduced recently. The ρ-SGraCR
models the synergy between modules in the same robot
and across robots, as well as the module success rates,
and is used to compute the performance of a multi-robot
team (a Gaussian mixture model). To form robust teams, we
contributed two robust team formation algorithms, OptRobust
and ApproxRobust, that computes the optimal robust multi-
robot team in exponential time, and approximates the optimal
team in polynomial time respectively.

We evaluated the ρ-SGraCR model and algorithms in a
series of experiments. First, we showed that depending on
the problem, the robustness of a multi-robot may or may
not increase as the number of robots on the team increases,
and demonstrated that the ρ-SGraCR effectively models both
scenarios. We compared the OptRobust and ApproxRobust
algorithms, and showed the ApproxRobust finds effective
teams using its assumptions, with significantly lower run-
time. In our robot experiments, we used three robot platforms
(Lego NXT, CreBot, Aldebaran NAO) in a foraging task,
and learned the ρ-SGraCR model using real robot data, and
formed robust teams (finding the optimal team 40% of the
time), outperforming competing approaches.

The ρ-SGraCR effectively models multi-robot team perfor-
mance, taking into account module failure rates, and forms
robust multi-robot teams in challenging robot domains. The
ρ-SGraCR is applicable to hardware modules (e.g., motors,
sensors) and software modules (e.g., selecting an appropriate
algorithm for a task) of configurable robots.

ACKNOWLEDGMENTS

The authors thank Brian Coltin for his help with the
CreBots. This work was partially supported by the Air Force
Research Laboratory under grant no. FA87501020165, by the
Office of Naval Research under grant number N00014-09-1-
1031, and the Agency for Science, Technology, and Research
(A*STAR), Singapore. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

REFERENCES
[1] S. Liemhetcharat and M. Veloso, “Synergy graphs for configuring robot

team members,” in Proc. AAMAS, pp. 111–118, 2013.
[2] T. Service and J. Adams, “Coalition formation for task allocation: theory

and algorithms,” JAAMAS, vol. 22, pp. 225–248, 2011.
[3] J. Chen and D. Sun, “Resource Constrained Multirobot Task Allocation

Based on Leader-Follower Coalition Methodology,” IJRR, vol. 30,
no. 12, pp. 1423–1434, 2011.

[4] Y. Zhang and L. Parker, “Task Allocation with Executable Coalitions
in Multirobot Tasks,” in Proc. ICRA, 2012, pp. 3307–3314.

[5] T. Preisler and W. Renz, “Scalability and robustness analysis of a multi-
agent based self-healing resource-flow system,” in Proc. FedCSIS, 2012,
pp. 1216–1268.

[6] G. Kaminka and M. Tambe, “Robust agent teams via socially-attentive
monitoring,” JAIR, vol. 12, pp. 105–147, 2000.

[7] A. Cunningham, K. Wurm, W. Burgard, and F. Dellaert, “Fully dis-
tributed scalable smoothing and mapping with robust multi-robot data
association,” in Proc. ICRA, 2012, pp. 1093–1100.

[8] N. Napp and E. Klavins, “Robust by composition: Programs for multi-
robot systems,” in Proc. ICRA, 2010, pp. 2459–2466.

[9] S. Stein, E. Gerding, A. Rogers, K. Larson, and N. Jennings, “Algo-
rithms and Mechanisms for Procuring Services with Uncertain Dura-
tions using Redundancy,” AIJ, vol. 175, no. 14-15, 2011.

