
Learning the Synergy of a New Teammate

Somchaya Liemhetcharat and Manuela Veloso
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

som@ri.cmu.edu and veloso@cs.cmu.edu

Abstract— In many multi-robot problems, the performance
of a team of robots is not the sum of their individual capa-
bilities; there is often synergy among the robots. We recently
introduced the synergy graph model to model such phenomena,
where robots are represented by vertices in a graph, their
capabilities represented by Normally-distributed variables, and
the interactions of robots represented with the structure of
the graph. The synergy graph is learned from observations of
robot team performances, with the underlying assumption that
observations of all the robots are available at once. However, it
is common that new information becomes available over time,
in particular as new robots enter the domain. In this paper, we
contribute a learning algorithm that uses new information to
add a new robot into an existing synergy graph, that requires
a smaller number of observations and faster computation
than relearning the entire synergy graph using the existing
learning algorithms. We introduce three heuristics to initialize
the learning algorithm, and perform extensive simulations to
analyze their characteristics, as well as compare two methods
of learning robot capabilities, over a variety of graph structure
types. We also compare three approaches to learning synergy
graphs, and demonstrate that adding a new teammate into an
existing synergy graph introduces higher error than completely
relearning the synergy graph. However, it is computationally
less expensive to add a new teammate, especially when the
number of robots is large.

I. INTRODUCTION

Multi-agent and multi-robot teams have been applied to a
variety of domains, such as exploration, resource gathering,
and robot soccer. In some domains, the task performance
depends on the team composition. Further, the performance
of a team may not be the sum of each robot’s capabilities:
there may be synergy among robots in the team. We recently
introduced the synergy graph model for such problem do-
mains [1], [2]. Robots are modeled as vertices in a graph,
and their capabilities are Normally-distributed variables to
model their performance in a dynamic environment. The
synergy graph is learned from observations of robots at
the task, and the learning algorithms learn both the graph
structure and robot capabilities without other information of
the task, with the assumption that observations of all the
robots are available initially. While the synergy graph model
readily models synergies among robots, the existing learning
algorithms are unable to incorporate new information without
relearning the entire model. In particular, it is likely for new
robots to become available over time to perform the task.

In this paper, we contribute a new learning algorithm for
the synergy graph model, that uses new information to add
a new robot into an existing synergy graph. We assume that
a synergy graph has already been learned using the existing
algorithms and prior information, and our goal is to use the

new information to update the model with another robot. To
do so, we build upon the existing algorithms, and similarly
use a simulated annealing approach to iteratively improve
the learned synergy graph.

Since we use simulated annealing, which is an approx-
imation technique, the initial starting point in the search
space may be important. Hence, we introduce three different
heuristics to initialize the learning algorithm, and perform
extensive experiments with a variety of graph structure types
to evaluate these heuristics and analyze their characteristics.
Further, the existing synergy graph learning algorithms use
two different techniques to learn robot capabilities: a matrix
least-squares approach and a non-linear equation solving
approach. We also perform experiments in simulation to
analyze these two techniques and their effects on our new
learning algorithm. Lastly, we compare the performance of
our algorithm to completely relearning the synergy graph
when new information is available, and show that while
higher error is introduced by learning only the newest mem-
ber, it is computationally much cheaper to do so, especially
as the number of existing robots in the graph is large.

II. RELATED WORK

Multi-robot teams are used in task allocation, where the
goal is to allocate tasks to robots so as to maximize some
utility function [3]. The performance is task-based, where
the overall performance is the sum of utilities of completed
tasks. To model heterogeneous robots, a common technique
is to model tasks and robots as lists of resources [4], or as
lists of services, where each robot performs one service [5].

We are interested in team-based performance, where per-
formance depends on the team composition. Coalition forma-
tion is a related field, where each possible coalition (subset of
agents) is given a value by a characteristic function. While
the general coalition formation problem is intractable [6],
heuristics have been used to apply coalition formation to
task allocation [7]. Externalities in coalition formation have
also been considered, where the value of a coalition depends
on the structure of the other coalitions (e.g., [8], [9]).

Recently, we introduced the synergy graph model for
team formation, where the performance of a team of robots
depends critically on its composition [1]. An extension to
the model was also introduced, that applies synergy graphs
to the role assignment domain [2]. We will elaborate on the
synergy graph model in the next section. Our interest is in
using the synergy graph model for team formation, and our
goal is to be able to incorporate information about a new
teammate to update a learned synergy graph.

III. THE SYNERGY GRAPH MODEL

We recently introduced the Synergy Graph (SG) model [1],
that models the team performance of any team of robots.
A team is a subset R ⊆ R, where R is the set of all
robots. The Weighted Synergy Graph for Role Assignment
model (WeSGRA) extends the Synergy Graph, and models
the performance of role assignments [2]. In this work, we
use the Weighted Synergy Graph by combining features of
both models [1], [2]:

Definition 3.1: A Weighted Synergy Graph (WeSG) is
a tuple {G,C}, where:
• G = (V,E) is a connected weighted graph;
• Each ri ∈ R is represented as a vertex vi ∈ V ;
• e = (vi, vj , wi,j) ∈ E is an undirected edge between

vertices vi, vj with weight wi,j ∈ Z+;
• C = (C1, . . . , CN) is a list of robot capabilities, where
Ci ∼ N (µi, σ

2
i) is the capability of robot ri ∈ R.

Using the WeSG, the performance of a team of robots is
computed with the synergy function [1]:

Definition 3.2: The synergy S(R) of a team of robots
R ⊆ R is:

S(R) =
1(|R|
2

) · ∑
{ri,rj}∈R

S2(ri, rj) (1)

S2(ri, rj) = φ(d(vi, vj)) · (Ci + Cj) (2)

where φ : Z+ → R+ is a monotonically decreasing compat-
ibility function, and d : V ×V → Z+ is the shortest distance
between two vertices in the Weighted Synergy Graph.

Fig. 1 shows an example of a Weighted Synergy Graph
representing 6 robots r1, . . . , r6. While the robots r2, r3,
and r6 individually have lower mean capabilities than r1, r4,
and r5, the synergy of the first subset is S({r2, r3, r6}) ∼
N (9.1, 2.4) while the synergy of the second subset is
S({r1, r4, r5}) ∼ N (4.9, 0.4). The first team {r2, r3, r6}
has a higher synergy than the second because their pairwise
distances are smaller, which represents that they work better
together. Thus, the WeSG model captures interactions of
robots beyond the sum of their capabilities.

A. Learning the Synergy Graph

Synergy graphs model the team performance of robots, and
it is learned from observations of robots’ performance. In this
subsection, we briefly summarize the learning algorithms of
the SG and WeSGRA models [1], [2].

Let O be the set of observations used for learning the
synergy graph, i.e., the training data. Each o ∈ O is an tuple
(t, p), where t ∈ T is a team and p ∈ R is the observed
performance of the team. The SG learning algorithm assumes
that all teams of size 2 and 3 are observed with multiple
observations each, and the WeSGRA learning algorithm
assumes that some subset of T is observed, with only one
observation per observed team.

The goal of the learning algorithms is to learn a synergy
graph that models the performance of all teams, including
those not in O. To do so, both learning algorithms use
simulated annealing to approximate the best-fitting synergy

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 ∼ N (10.3, 17.2)

C4 ∼ N (15.2, 10.4) C6 ∼ N (7.7, 8.5)

C3 ∼ N (4.7, 6.4)

C5 ∼ N (15.1, 13.2)

C2 ∼ N (8.6, 5.1)

Fig. 1: An example of a Weighted Synergy Graph represent-
ing 6 robots.

Observations O

Learn capabilities

v1 v2

v4 v5

v3

v6

4

45 1

2

1

Modify any edge

v1 v2

v4 v5

v3

v6

4

45 1

2

1

C1 C2 C3

C4 C5 C6

Initial Random Structure

Fig. 2: The process of the Synergy Graph and WeSGRA
learning algorithms used to learn a synergy graph from
observations. Simulated annealing is performed where the
graph structure is modified and robot capabilities are learned.

graph. Fig. 2 shows the learning process. A random graph
structure is initially created (unweighted for SG and weighted
for WeSGRA). The graph structure and observations O is
used to compute the robot capabilities C — the structure
and C then define an initial guess of the model. Within the
simulated annealing loop, the graph structure is modified
and robot capabilities recomputed to generate a neighbor
guess. The neighbor is accepted based on the log-likelihood
of training data (compared with the current best estimate)
and the temperature schedule. In this way, the space of graph
structures is explored and the closest synergy graph is learned
at the end of the algorithms. Further details of these learning
algorithms can be found in the original papers [1], [2].

IV. ADDING A NEW TEAMMATE

The SG and WesGRA models are learned from data, with
the underlying assumption that data about all the robots are
available initially. This paper focuses on how to incorporate
new information into the model; we are interested in the case
of adding a new teammate into a synergy graph.

Let R = {r1, . . . , rN} be the set of robots initially known.
The prior learning algorithms assume that observations O
about teams in R are available, and the algorithms learn a
synergy graph model S from O.

Now suppose there is a new robot rN+1, and let the new
set of robots be R+ = R ∪ {rN+1}. Also suppose that
observations about the new robot are available, and let ON+1

be the set of new observations. We will elaborate on the
details of ON+1 later. The goal is to learn an updated synergy
graph S+ that models the robots R+.

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

Observations ON+1

WeSG modeling r1, . . . , rN

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

v7

2

3

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

v7

5

3
C7

Add rN+1

Learn rN+1’s capability

Modify edges of vN+1

Fig. 3: Our learning algorithm that adds a new teammate into
a WeSG. Simulated annealing is performed, where edges of
vN+1 are modified, and the capability CN+1 is learned.

The existing learning algorithms are capable of learning a
synergy graph to model R+ — namely, by using the union
of all the observations O+ = O∪ON+1. However, using O+

to learn a new model has two main drawbacks. Firstly, the
previously learned synergy graph S is discarded. Secondly,
the runtime required to learn the new S+ is high: the learning
algorithm of SG has a runtime of O(N3), and the learning
algorithm of WeSGRA has a runtime of O(|O+|).
A. Using Prior Information

Our approach is to use the previously learned synergy
graph S to jump-start the learning. We assume that S models
the interactions and capabilities of the robots in R, and only
seek to learn the robot rN+1’s capability, and the edges that
connect rN+1 to the other robots.

Fig. 3 shows our learning process, and Algorithm 1 shows
the pseudocode. While we use the Weighted Synergy Graph
model in Algorithm 1, it is applicable with minor changes for
the original Synergy Graph model as well as the WeSGRA
model. The key difference in our learning algorithm is that
we only consider edges that directly connect rN+1 to other
robots in R, and only learn rN+1’s capability.

There are three main components to our learning algo-
rithm: generating the initial edges (GenerateEdges), generat-
ing neighbor edges in the simulated annealing loop (Neigh-
borEdges), and learning rN+1’s capability (LearnCapability)
given the structure of the graph, We will explain each of
these three functions in detail below.

B. Generating Initial Edges

The goal of the GenerateEdges function (Line 4 of Algo-
rithm 1) is to generate edges that connect the new vertex
vN+1 (that represents the new robot rN+1) to the other
vertices (v1, . . . , vN). Recall that a WeSG is a connected
weighted graph, and so vN+1 must have at least one edge
that directly connects it to another vertex; the existing graph
G is assumed to be connected since it is a valid WeSG.

One method is to randomly generate these edges. While
this random method is naive, it provides a baseline for
other heuristics introduced below, and does not require any

Algorithm 1 Add a new robot to a WeSG
AddRobotToWeSG(S, rN+1, ON+1)

1: // Add a new vertex to represent rN+1

2: V + ← V ∪ vN+1

3: // Generate initial edges to connect rN+1 to R
4: Einitial ← GenerateEdges(S, rN+1, ON+1)
5: E+ ← E ∪ Einitial
6: // Form the new WeSG graph structure
7: G+ ← (V +, E+)
8: // Learn rN+1’s capability
9: CN+1 ← LearnCapability(G+, ON+1)

10: // Form the initial WeSG
11: S+ ← (G+, C ∪ CN+1)
12: score← LogLikelihood(S+, ON+1)
13: // Simulated annealing loop
14: for k = 1 to kmax do
15: G′ ← NeighborEdges(G+, rN+1)
16: C ′N+1 ← LearnCapability(G′, ON+1)
17: S′ ← (G′, C ∪ C ′N+1)
18: score′ ← LogLikelihood(S′, ON+1)
19: if P(score, score′, temp(k, kmax)) > random() then
20: S+ ← S′

21: score← score′

22: return S+

information about the domain or existing synergy graph (only
a probability p is required). A probability 0 < p ≤ 1 is
defined, and for every possible edge connecting vN+1 with
another vertex, a dice is thrown and the edge is created with
probability p. The weight of a created edge is also randomly
chosen to be an integer between wmin and wmax. The while-
loop ensures that at least one edge is created so vN+1 is
connected to some other vertex.

While generating random edges suffices to create an
initial guess, it requires a defined probability p, which may
be domain-specific and difficult to ascertain. An improved
method, GenerateEdgesWithDensity, first estimates p by ex-
amining the existing WeSG S and determining the density
of edges (i.e., number of edges divided by the number of
possible edges) in that graph. The underlying assumption
is the number of edges connecting the new vertex vN+1

with other vertices is similar to the edge density of S.
As such, GenerateEdgesWithDensity maintains the domain-
independence of GenerateRandomEdges, while not requiring
any probability p to be set, and instead learns it from the
existing synergy graph.

The third method to generate the initial edges also uses the
existing edges of the synergy graph S. However, instead of
computing the density of edges, GenerateSimilarEdges finds
the robot ri ∈ R most similar to rN+1, and duplicates all its
edges. The similarity between robots is computed using the
observations in ON+1, which contain observations of teams
containing rN+1. For example, suppose that one observation
o ∈ ON+1 is (R′, v), which indicates a team {rN+1, rj} =
R′ ⊆ R that had a performance of v. A new synthetic

observation o′ = ({ri, rj} , v) is created where rN+1 is
replaced with ri. All such synthetic observations form a new
set O′, and the log-likelihood of O′ given S is computed. The
most similar robot to rN+1 is then the one with the highest
log-likelihood. GenerateSimilarEdges assumes that the new
robot is similar to another robot already present in the
synergy graph S, and hence uses its edges as a starting point
for the learning algorithm. Such an assumption is domain-
dependent, and hence GenerateSimilarEdges may outperform
the above two heuristics in certain domains (when the new
robot resembles an existing one) but may perform more
poorly when a completely new robot is introduced.

C. Generating Neighbor Edges

The three functions described above create an initial
guess of the edges connected vN+1 to the other vertices in
the WeSG. During the simulated annealing, new candidate
WeSG structures are generated, so as to effectively explore
the space of all possible edges. We use the same four
actions of neighbor generation as the WeSGRA learning
algorithm [2], except that we only consider edges involving
vN+1, i.e., an edge e = (vN+1, vi, w) (the WeSGRA learning
algorithm modifies any edge in the graph):
• Remove an existing edge if it does not disconnect vN+1

• Add a new edge with a randomly-generated weight w
• Increase the weight of an edge by 1, subject to wmax
• Decrease the weight of an edge by 1, subject to wmin

There are (wmax−wmin +1)N possible edges that connect
vN+1 to the other vertices, and so it is infeasible to consider
all combinations of edges. Through these four actions, we
can explore the space of such edges iteratively. Further, since
only edges involving vN+1 are considered, compared to all
possible edges in the SG and WeSGRA learning algorithms,
a much smaller and restricted space of edges are considered.

D. Learning rN+1’s Capability

The learning algorithms of SG and WeSGRA have ca-
pability learning functions that learn the capabilities of all
the robots in the synergy graph. The SG and WeSGRA
algorithms differ in the techniques used to learn the robots’
capabilities given the observations O and a synergy graph
structure. In SG, O (the set of observations involving
r1, . . . , rN) contain all teams of size 2 and 3 are observed,
with multiple observations per team. A Normal distribution
per observed team is estimated using the data, and a matrix
least-squares operation is used to solve for the means and
variances of the robot capabilities [1]. In WesGRA, O
contains samples of role assignments, and each observation
in O forms a log-likelihood expression involving the means
and variances of the robots in the team. A non-linear solver
then solves for the robot capabilities using the expressions
to maximize the log-likelihood [2].

Our LearnCapability capability function learns robot
rN+1’s capability using the graph structure of a WeSG and
the observation set ON+1. We assume that the capabilities
of r1, . . . , rN are known, so the only unknowns are µN+1

Observations ON+1

S∗ (models r1, . . . , rN+1)

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

v7

4

3
C ′

7

Extract S (models r1, . . . , rN)

Learn S+

v1 v2

v4 v5

v3

v6

4

45 2

2

1

C1 C2 C3

C4 C5 C6

v7

5

3
C7

Generate observations

Compare S∗ and S+

Fig. 4: The experimental process to compare the initial edge
generation functions and capability learning methods.

and σ2
N+1, the mean and variance of rN+1’s capability,

i.e., CN+1 ∼ N (µN+1, σ
2
N+1).

We use two techniques to learn rN+1’s capability, which
are modified from the SG and WeSGRA algorithms. If ON+1

contains observations of all teams of size 2 and 3 involving
rN+1, i.e., ∀o = (t, v) ∈ ON+1, rN+1 ∈ t, we use a matrix
least-squares operation to solve for CN+1. Otherwise, we
form log-likelihood expressions and use a non-linear solver.

V. ANALYZING THE LEARNING ALGORITHM

In this section, we compare the three edge generation
functions and two capability learning functions to analyze
their characteristics and performance.

A. Experimental Setup

Fig. 4 shows the process of our experiments. We first
randomly generate a WeSG S∗ with N +1 robots, and label
the vertices v1 to vN+1 such that ∀i s.t. 1 ≤ i ≤ N + 1,
the subgraph with vertices v1, . . . , vi remains connected. In
particular, the subgraph containing v1, . . . , vN forms the pre-
existing WeSG to our learning algorithm (S in the input to
Algorithm 1). Fig. 5 shows the four different graph structures
of WeSGs created: a chain, loop, star, and a random structure
(where edges are added probabilistically). For each graph
structure type, we generate 50 WeSG models, and hence 200
WeSG models S∗ are generated in total.

From the WeSG S∗, we generate the observation set
ON+1. For the experiments using the matrix least-squares
robot capability learner, we use all pairs and triples of robot
teams that contain rN+1, i.e., ∀o = (t, v) ∈ ON+1, t =
(rN+1, ri) or t = (rN+1, ri, rj). The value v is sampled from
the synergy of t (Definition 3.2). For each team, 30 samples
are generated so 30 different observations are present per
team in ON+1 (there are O(N2) teams). For the experiments
using the non-linear solver, we generate 25 samples of team
performances, i.e., |ON+1| = 25. The matrix least-squares
learner requires O(N2) observations (every robot team of
size 2 and 3 that contains rN+1), while the non-linear solver
runs with only 25 observations.

v1 v2

v4

v3

4

5

2

C1 C2

C3

C4

v1 v2

v4

v3
4

5

2

C1 C2

C3

C4

v1 v2

v4

v3
4

1

5

C1 C2

C3

C4

v1 v2

v4

v3

1

2

4

C1 C2

C3

C4

3

2

Chain Loop

Star Random

Fig. 5: Examples of the four WeSG structure types generated:
chain, loop, star, and random.

Algorithm 1 then adds robot rN+1 into the WeSG to form
S+. To compare S∗ and S+, we use the KL-divergence of
the synergy of possible teams. We compute the synergy (a
Normally-distributed variable) of all teams containing rN+1,
i.e., R ⊂ R+ s.t. |R| ≥ 2 and rN+1 ∈ R and calculate the
KL-divergence of the synergy using the learned S+ from the
actual S∗. The difference between S∗ and S+ is defined as
the median KL-divergence of the synergies:

D(S∗, S+) = medianR(DKL(S∗(R) ‖ S+(R))) (3)

where R ⊂ R+ s.t. |R| ≥ 2 and rN+1 ∈ R, and S∗ and S+
are the synergy functions using S∗ and S+ respectively.

The learning algorithm performs simulated annealing for
a fixed number of iterations, which may have an impact on
the learned WeSG. Hence, we ran the algorithms for both
50 and 100 iterations of simulated annealing, to determine
its effects. Also, there is a random element to the learning
algorithm, and so we repeated the experiment 10 times per
hidden S∗, for a total of 2000 trials (4 graph types, 50 WeSGs
per type, 10 trials per WeSG) for each setup of the learning
algorithm (capability learner and initial edge generation).

B. Comparison Results

Table I shows the results of these experiments. We set
N = 14, so rN+1 is the 15th robot in the WeSG. Across the
capability learning functions, the average difference between
the hidden WeSG and the learned WeSG generally improves
as the number of iterations of simulated annealing goes
from 50 to 100. However, when the difference is already
small (e.g., with the Star structure type), more iterations do
not improve the algorithm’s performance. The least-squares
capability solver learns WeSGs that have a smaller difference
from the hidden WeSG across the four structure types, due
to having much more data to learn from.

The three heuristics used for the initial edge genera-
tion have varying performance. The most similar heuristic
performs the best, learning the closest WeSG across the

WeSG Learner WeSG Structure Type
Capability Learner Initial Edges Chain Loop Star Random

Least-squares
(50 iterations)

Random 16.0 47.8 3.8 7.9
Density 14.9 33.8 4.6 7.2

Most Similar 9.4 21.8 2.2 7.5

Least-squares
(100 iterations)

Random 14.4 32.4 3.3 5.8
Density 14.8 31.6 2.9 8.7

Most Similar 9.3 18.6 1.7 6.8

Non-linear
(50 iterations)

Random 75.3 200.0 12.7 16.6
Density 77.3 162.0 14.2 28.2

Most Similar 40.9 97.1 14.4 17.7

Non-linear
(100 iterations)

Random 91.2 74.0 13.9 24.2
Density 69.9 135.2 15.8 15.5

Most Similar 45.9 72.7 14.8 17.6

TABLE I: Average difference D(S∗, S+) between the hidden
WeSG and learned WeSG given different hidden structure
types and robot learning algorithms.

capability learners and number of iterations. The random
and density heuristic perform similarly, since the underlying
algorithm is similar except for a different density p used.

Between the four WeSG structure types, star structures
were the easiest to learn, followed by random, while chain
and loop have similar performance. The random structure
type performs well due to the random search in the sim-
ulated annealing iterations, as seen from the improvement
in performance between 50 and 100 iterations. The star
structure has the best performance probably because the
pairwise distances between robots do not change much with
the addition/removal of new edges. In contrast, the chain
and loop structures are more difficult to learn, since an extra
edge can easily disrupt the structure and change the shortest
distance between existing robots.

VI. COMPARING DIFFERENT LEARNING APPROACHES

In the previous section, we analyzed the different heuris-
tics and capability learning functions of our learning al-
gorithm. In this section, we compare the performance of
our learning algorithm against the baseline of the SG and
WeSGRA learning algorithms [1], [2].

The SG and WeSGRA learning algorithms assume that the
observation set of all the robots r1, . . . , rN+1 are available
initially (O+ = O ∪ ON+1), while our learning algorithm
only requires the observations of rN+1 interacting with the
other robots (ON+1), but assumes the existence of a WeSG
modeling r1, . . . , rN and adds rN+1 into the WeSG.

To compare these learning algorithms, we did the fol-
lowing: we first generate a hidden WeSG S∗ with N + 1
robots, and label the vertices v1 to vN+1 such that ∀i s.t.
1 ≤ i ≤ N+1, the subgraph with vertices v1, . . . , vi remains
connected, similar to the previous section. The observation
sets O and ON+1 are then generated using S∗. We used 3
learning approaches to learn the WeSG. First, in Completely
Relearn, the SG and WeSGRA learning algorithms are run
with the complete observation set O+. In Learn N then Add
Teammate, we use the SG and WeSGRA learning algorithm
to learn a WeSG of n robots (using the observation set O,
then our new iterative learning algorithm to learn the n+ 1
robot’s capability. In the third approach, Completely Iterative,

WeSG Learner Number of Robots
5 6 7 8 9 10

Completely Relearn 1.7± 5.1 4.4± 9.3 7.8± 12.8 13.0± 15.3 15.1± 16.3 17.9± 18.6
Learn N then Add Teammate 19.2± 52.9 18.5± 28.7 22.3± 28.1 24.0± 25.0 33.0± 63.5 29.4± 28.1

Completely Iterative 28.2± 47.9 33.3± 37.5 33.4± 31.2 43.0± 36.2 48.8± 38.9 52.3± 44.3

TABLE II: Average difference between the hidden WeSG and learned WeSG using different learning methods.

we assume that the WeSG modeling r1 and r2 is given (the
subgraph of S∗ containing two vertices), and iteratively add
r3, r4, and so on until rN+1.

The learned WeSG models from the different learning
approaches are compared to the hidden one S∗ using the
distance function in the previous section (Equation 3). We
varied the number of robots from 5 to 10, and Table. II
shows the results. Completely Relearn performs the best,
as expected, with a low difference of 1.7 with 5 agents
to 17.9 with 10 agents. The difference increases with the
number of robots as the learning problem becomes more
difficult. In comparison, Learn N then Add Teammate has
a higher difference. However, the rate of increase in error
is lower than completely relearning, which suggests that
when n is large, Learn N then Add Teammate will perform
comparably to Completely Relearn. Also, the runtime cost
of Completely Relearn is much higher than that of Learn N
then Add Teammate. The last approach, Completely Iterative,
has much higher error than the other two approaches, which
is due to the fact that errors accumulate as more robots
are learned iteratively. Hence, it would be recommended to
use Completely Relearn at certain intervals, so as to reset
the accumulated errors, albeit at high runtime cost, and use
iterative learning in small steps.

VII. CONCLUSION

We contributed a learning algorithm that uses new infor-
mation relating to a new robot, and add a new vertex and cor-
responding edges to an existing synergy graph. Our algorithm
creates an initial guess of edges, and iteratively improves the
structure and learns the robot’s capability through simulated
annealing. We introduced three heuristics for generating the
initial edges, and use two capability learning functions — a
matrix least-squares method and a non-linear solver.

We compared the effectiveness of the three edge genera-
tion functions, and showed that the most similar heuristic,
that replicates the edges of an existing robot, performs
well across a variety of synergy graph structure types. We
also compared the two capability learning functions, and
showed that while the matrix least-squares solver performs
better than the non-linear solver, it requires a much larger
number of observations than the non-linear solver. We also
compared three approaches to learning the robot capabilities,
completely relearning, iteratively learning only the last robot,
and iteratively learning all the robots. We showed that the
error accumulates in iterative learning if multiple agents are
learned, so completely relearning the robot capabilities and
synergy at certain intervals is recommended to reset the error.

Incorporating new information is important in updating a
learned model, and our learning algorithm allows synergy
graphs to be applicable to a larger variety of domains. We
performed our experiments in simulation, and our algorithm
does not require any domain-dependent information. Hence,
it can be run on data from real robots without any mod-
ifications. While the performance of the edge generation
functions is domain-dependent, our simulations suggest that
the most similar heuristic will perform well overall.

ACKNOWLEDGMENTS

This work was partially supported by the Air Force
Research Laboratory under grant no. FA87501020165, by the
Office of Naval Research under grant number N00014-09-1-
1031, and the Agency for Science, Technology, and Research
(A*STAR), Singapore. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

REFERENCES

[1] S. Liemhetcharat and M. Veloso, “Modeling and Learning Synergy
for Team Formation with Heterogeneous Agents,” in Proceedings of
the International Conference on Autonomous Agents and Multiagent
Systems, 2012, pp. 365–374.

[2] S. Liemhetcharat and M. Veloso, “Weighted Synergy Graphs for Role
Assignment in Ad Hoc Heterogeneous Robot Teams,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012, pp. 5247–5254.

[3] B. P. Gerkey and M. J. Mataric, “A Formal Analysis and Taxonomy
of Task Allocation in Multi-Robot Systems,” Journal of Robotics
Research, vol. 23, no. 9, pp. 939–954, 2004.

[4] J. Chen and D. Sun, “Resource Constrained Multirobot Task Allocation
Based on Leader-Follower Coalition Methodology,” Journal of Robotics
Research, vol. 30, no. 12, pp. 1423–1434, 2011.

[5] T. Service and J. Adams, “Coalition formation for task allocation:
theory and algorithms,” Journal of Autonomous Agents and Multi-Agent
Systems, vol. 22, pp. 225–248, 2011.

[6] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme,
“Coalition Structure Generation with Worst Case Guarantees,” Journal
of Artificial Intelligence, vol. 111, pp. 209–238, 1999.

[7] L. Vig and J. Adams, “Market-based Multi-Robot Coalition Forma-
tion,” in Proceedings of the International Symposium on Distributed
Autonomous Robotics Systems, 2006, pp. 227–236.

[8] T. Michalak, D. Marciniak, M. Szamotulski, T. Rahwan,
M. Wooldridge, P. McBurney, and N. Jennings, “A Logic-Based
Representation for Coalitional Games with Externalities,” in
Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems, 2010, pp. 125–132.

[9] B. Banerjee and L. Kraemer, “Coalition Structure Generation in Multi-
Agent Systems with Mixed Externalities,” in Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent Systems,
2010, pp. 175–182.

