
Multi-Agent Ad Hoc Team Partitioning by
Observing and Modeling Single-Agent Performance

Etkin Baris Ozgul∗, Somchaya Liemhetcharat†, and Kian Hsiang Low∗
∗Department of Computer Science, National University of Singapore, Singapore

E-mail: {ebosgul, lowkh}@comp.nus.edu.sg
†Institute for Infocomm Research, A*STAR, Singapore

E-mail: liemhet-s@i2r.a-star.edu.sg

Abstract—Multi-agent research has focused on finding the
optimal team for a task. Many approaches assume that the
performance of the agents are known a priori. We are interested
in ad hoc teams, where the agents’ algorithms and performance
are initially unknown. We focus on the task of modeling the
performance of single agents through observation in training
environments, and using the learned models to partition a new
environment for a multi-agent team. The goal is to minimize
the number of agents used, while maintaining a performance
threshold of the multi-agent team. We contribute a novel model
to learn the agent’s performance through observations, and a
partitioning algorithm that minimizes the team size. We evaluate
our algorithms in simulation, and show the efficacy of our learn
model and partitioning algorithm.

I. INTRODUCTION

Theoretical work on multi-agent systems has mostly focused
on the efficiency of the algorithm. Most research has used
the same teams in the same environment to highlight the
performance advantage of one algorithm over others. However,
when it comes to applying the theoretical work on real world
applications, another aspect of the application process comes
in the picture. No matter what algorithm and hardware you
are using on what application, you will have to assess the
situation, environment and other external effects as well as
the performance and cost constraints/requirements of your
application in order to optimize the team that can yield optimal
results. For example, in applications such as urban search
and rescue (USAR) of a disaster site or patrolling an area
for security, the multi-agent team has to be chosen carefully.
Intuitively, using as many robots as possible will give the best
performance but it will not be feasible in terms of cost and
resources. Further, a team that is bigger than necessary may
cause certain drawbacks such as higher communication load
or difficulty in coordination.

We are interested in ad hoc teams, where the goal is to
form a multi-agent team comprised of agents that have not
collaborated before. In this work, agents can refer to humans,
software agents, and robots. We believe that ad hoc teams
are a realistic approach to solving real-world problems since
there are many research institutions that focus on single-agent
algorithms. For example, in a USAR scenario, different USAR
personnel and robots may arrive at the scene. Since these
USAR agents originate from different places, it is difficult to
quantify how well they will work as a team, or even how

best to allocate the USAR environment among them. We
are interested in modeling the performance of single agents
(e.g., each USAR personnel/robot) in training environments, in
order to partition a new environment using a minimal number
of agents. Each agent then acts independently in its allocated
area, but the overall team performance has to meet a threshold.
Our interest is not particular to USAR – we are interested in
effectively partitioning an environment so that an ad hoc multi-
agent team is able to perform well.

The first important issue while solving this problem is
to model the performance of an agent in a given setting.
The model has to be modular enough so that it can be
applied on a new environment with ease, without requiring
excessive training, so that when we want to solve the problem
in a new environment, the solution will not be costly and
applicable easily. The other important issue is the partitioning
of the environment and allocating them among the agents.
The main difficulty here is that a greedy approach might
increase efficiency for certain agents but will lead to a lower
overall performance than the team can achieve. Therefore,
the environment has to be partitioned and allocated to team
members according to their capabilities so that each agent
yields good results while the overall team performance is
maximized.

The related work in the literature, which we detail later, does
not provide to solution for both team formation and partition-
ing the environment together. Since these two tasks closely
related to each other, separately solving them will not yield
the optimal result. Approaches that focus on fleet optimization
and team formation typically rely on either precise information
of the agents and environment, which is used to optimize the
team for that particular environment and plan the actions of the
agents. We are interested in ad hoc teams, where the actions
of the agents are not controlled by us; instead, we allocated
the environment for the agents to act independently.

In this paper, we contribute an approach of modeling the
performance of single-agent algorithms, through observations
of its performance in various training environments. We then
use the learned models in order to partition a new environment
in order to minimize the total number of agents, while ensuring
a performance threshold of the multi-agent team.

The structure of the paper is as follows: Section II dis-
cusses related work and highlights the differences in our

research. Section III formally defines the problem, and gives
an overview of our approach, and Section IV contributes
our algorithms for modeling the single-agent algorithms, and
partitioning a new environment. Section V describes our
experiments in simulation and results, and we conclude in
Section VI.

II. RELATED WORK

To the best of our knowledge, the existing work in multi-
agent literature does not cover both team optimization and
environment partitioning. Existing work either covers only
team formation without worrying about the partitioning, such
as fleet optimization and team formation, while the others
partition the environment among robots but do not cover
how to form the multi-agent team and assume the team is
fixed. Research in fleet optimization has mostly focused on
transportation, e.g., [4]. In [4], the purpose is to find the
optimal team formation among a variety of vehicles that would
serve the customers without violating their constraints, such
as their pick-up time window and travel duration. Similarly,
[6] optimizes the fleet size and the contracts for ships. Ships
serve the known demands while incorporating various aspects
of the shipping industry such as ship maintenance expenses
and taxes, which vary for different types and age of ships.
Both [4] and [6] consist of optimizing the vehicle fleet and
allocating the demands among the vehicles, but they assume all
the pick-up time windows are known prior to the optimization,
while our approach has no such assumption, only that the
probability distribution of the pick-up demands (which we
term as “intrusions” later) are known.

Research in team formation focuses on selecting which
agents to form a team for a task. A common approach is
to pre-define the capabilities of the agents as resources or
services [11], and select the agents that cover the requirements
of the task. However, such an approach requires knowledge
of the agents’ capabilities. In contrast, the Synergy Graph
model learns the agents’ capabilities and their synergy through
observations [7], [10]. Thus, the Synergy Graph model is
well-suited for ad hoc scenarios where the agent capabilities
are unknown. The Synergy Graph for Configurable Robots
(SGraCR) model has also been proposed to select relevant
modules of different robots of a multi-robot team [9], and to
handle failures in modules to achieve robustness [8]. However,
the Synergy Graph approach assumes that the environment and
task is fixed, and forms the optimal team of agents for the task.
We are also interested in the ad hoc scenario, but we consider
how to partition a new environment for a multi-agent team,
after learning the agents’ capabilities.

In addition to team formation and fleet optimization ap-
proaches, there exists various work on environment parti-
tioning. They can be characterized in two groups: static and
dynamic. [3] and [5] propose static partitioning of a polygon
so that the partitioning is done once and never changes. On the
other hand, [2] proposes a dynamic partitioning algorithm that
allows neighboring agents to negotiate between themselves to
exchange allocated locations, which allows them to adapt to

changes in locations’ probabilities of an intrusion occurring.
Although these approaches provide solutions for partitioning
problems, they require the number of agents to be known
prior the partitioning and they are unable to find an optimal
number of agents to complete the task given the constraints.
In this paper, we are proposing an approach that can model a
performance of an agent in an environment, which is later used
to form an optimal team of robots to work in an environment as
well as partitioning that environment among team members.

III. PROBLEM STATEMENT AND APPROACH

In this section, we formally define the ad hoc team parti-
tioning problem and give an overview of our approach. We
begin with a motivating scenario that we use throughout this
paper.

A. Motivating Example

Suppose that there is an environment where a multi-agent
team has to patrol. Each location in the environment has an
independent probability of intrusions occurring, and the goal
of the multi-agent team is to minimize the average detection
time of the intrusions. We are interested in an ad hoc scenario,
where the agents of the multi-agent team have not coordi-
nated before. Further, the agents have pre-defined algorithms,
e.g., single-agent patrolling algorithms that are developed by
other research groups. These algorithms are not designed for
tightly-coupled coordination, and thus the environment has
to be partitioned — each agent has an allocated area that
is static, and every location in the environment has to be
assigned to a single agent, i.e., there are no overlaps in the
agents’ allocations. Each agent then patrols its allocated area
using its own algorithm. Given a desired performance bound
of the multi-agent team, e.g., each intrusion is detected within
5 timesteps, the goal is to find the minimum number of
agents and the optimum partitioning and allocation of the
environment among the agents.

B. Ad Hoc Team Partitioning Problem

Let L = {li,j} be the set of locations in the environment,
where 1 ≤ i ≤ n, 1 ≤ j ≤ m. We represent the environment
as a n × m grid with no obstacles in this paper, although
our approach is general and applicable to environments with
obstacles.

Let P = {pi,j} be the set of probabilities, where 1 ≤
i ≤ n, 1 ≤ j ≤ m. Each location li,j is associated with a
probability pi,j , where pi,j is the probability that an intrusion
will occur at li,j every timestep.

Let A = (a1, . . . , aK) be the agents in the multi-agent team,
and let A be the set of all types of agents, i.e., ∀aα ∈ A, aα ∈
A. Each type of agent in A has a different algorithm and/or
hardware thus each agent type performs differently given the
same setting. Note that it is possible that ∃α, β such that
aα, aβ ∈ A and aα = aβ , which implies that aα and aβ are
the same type of agent. In other words, team A can comprise
a homogeneous type of agent, or a combination of multiple
types of agents.

Let q(t)α be the location of agent aα at timestep t.
Let v(t)i,j be the cumulative penalty for every location li,j ,

where:

v
(0)
i,j = 0

v
(t)
i,j =

{
0 if ∃q(t)α = li,j

v
(t−1)
i,j + pi,j otherwise

Thus, v(t)i,j increases for every timestep that location li,j is
unvisited by an agent.

Let V (A) be the penalty of the multi-agent team, where:

V (A) =
1

T

T∑
t=1

∑
i,j

v
(t)
i,j

where T is the maximum number of timesteps. Hence, V (A)
is the average expected penalty.

The goal of the ad hoc team partitioning problem is to
form a multi-agent team A that minimizes K for a given
threshold Vdesired and allocates the environment among the
agents optimally:

min K
subject to V (A) ≤ Vdesired

C. Our Approach

We briefly describe our approach to solving the ad hoc team
partitioning problem below:

Let E be the environment such that E = {L,P}
• For each agent type a ∈ A, we model its single-agent

penalty with a function Ṽ , which is an approximation of
the unknown function V ;

• We model Ṽ (a,E) = w1,ax1 . . . wr,axr, where wα,a ∈ R
is a weight, and xα is a property of an environment E,
that we elaborate in the next section;

• We learn the weights wz from observations of a in a
set of environments Etraining = {E(1), E(2), ...}, where
E /∈ Etraining;

• We partition the environment E using the learned weights
wα,a in order to minimize K while maintaining the
threshold Vdesired, where each partition is allocated to a
single agent. The set of partitions E = {E1, E2, ..., EK}
obtained from E has to satisfy the following proper-
ties/conditions:

–
⋃
Eα∈E Eα = E

– Eα ∩ Eβ = ∅, ∀Eα, Eβ ∈ E where α 6= β
–

∑
1≤α≤K Ṽ (aα, Eα) ≤ Vdesired, where aα ∈ A and

Eα ∈ E

IV. ALGORITHM

In this section, we will describe the two algorithms we
contribute. The first algorithm models the performance of
the single-agent algorithms, and learn the weights from ob-
servations of the algorithms in training environments. The

second algorithm uses the learned models to partition the
environment such that the number of partitions is minimized,
while attaining the required performance of the multi-agent
team.

A. Learning the Weights

The weights represents the effect of each property of the
environment E on the function Ṽ . These weights are obtained
through a training process. First, we create a set of sample
environments Etraining = {E(1, E(2), ...} , whose dimen-
sions are n(1) × m(1), n(2) × m(2), . . . respectively. For the
training set, the values of n(i) and mi) for each environment
sample is randomly chosen from the intervals [nmin, nmax]
and [mmin,mmax] respectively. For each environment E ∈
Etraining and for each type of agent a ∈ A, V (a,E) and
properties of {x1,, xr} are computed. After calculating
the V (a,E) values and properties, we store these values in
matrix A and vector B, where each row corresponds to an
environment sample. Each column in matrix A corresponds to
one property in Ṽ and B has values of V from the simulations.
In order to learn the weights we solve the equation Aw = B
using least-squares approach. The weight we learned will
be used to estimate the performance of an agent on a new
environment.

Although it is possible to choose any other or additional
properties, in this work we have used 8 properties of the
environment. Using these properties,Ṽ is represented as:

Ṽ (E′) = w1x1(E
′) + w2x2(E

′) + w3x3(E
′) + w4x4(E

′)

+w5x5(E
′) + w6x6(E

′) + w7x7(E
′) + w8x8(E

′)

wz corresponds to weights and Ṽz corresponds to the prop-
erty functions. The properties we used in this paper can be
summarized as follows:
• x1(E

′) =
∑
li,j ,li′,j′∈L

[d(li,j , li′,j′)(pi,j + pi′,j′)],
where d(li,j , li′,j′) is the manhattan distance between
locations li,j and li′,j′ ;
Property x1 captures both the cumulative probabilities in
the environment and its size. The value of x1 is especially
important since it can measure when high probability
locations are further from each other, which may cause
the most frequently visited locations to be far from each
other and increase the distance of the most frequently
traversed trajectory of the agent.

• x2(E
′) =

∑
li,j ,li′,j′∈L

[d(li,j , li′,j′)
2(pi,j + pi′,j′)];

Property x2 is similar to x1, where the only difference
in x2 is that the distance is squared so the importance of
the distance is higher for this property.

• x3(E
′) =

∑
pi,j∈P pi,j ;

x3 is the sum of the all locations’ probabilities of
incrusion occuring. This property gives us the expected
number of items that can appear in environment E′ in
one time step.

• x4(E
′) =

∑
li,j ,li′,j′∈L

d(li,j , li′,j′);

This property is the sum of all the pairwise distances
in E′. It captures the time the agent needs to travel the
entire environment (without considering the probabilities
of each location).

• x5(E
′) = maxli,j ,li′,j′∈L d(li,j , li′,j′);

The maximum distance the agent needs to travel
• x6(E

′) = min (n,m), where n and m are the dimensions
of the environment E′;

• x7(E
′) = max (n,m), where n and m are the dimensions

of the environment E′;
x6 and x7 captures the shape of the environment.

• x8(E
′) = nm, where n and m are the dimensions of the

environment E′;
This property represents the area of the environment.

Each property described above captures a different aspect
of the environment and they are all required for representing
the environment accurately for the given task. For a different
task or application, the properties and the function Ṽ can be
modified. We will validate the importance of these properties
later in Experimental Results section.

B. Partitioning the Environment

The goal of the partitioning step is to create contiguous
segments of the environment which are assigned to each agent.
To do so, the algorithm continuously creates new partitions by
dividing current partitions into two until the overall partition-
ing meets the desired performance requirement. This strategy
allows the algorithm to solve the task with the minimum
number of robots. Algorithm 1 shows the pseudo code of our
partitioning algorithm.

Initially, the algorithm starts with the whole environment E,
and partitions it into two rectangle shaped partitions E1 and
E2, so that the sum V (a1, V1)+V (a2, V2) is minimized. Next,
the partition with highest V value from the existing ones is
chosen, and divided into two again as explained above. This
process is repeated until the sum of all the V values in the
partition list is below Vdesired. This strategy allows us to meet
the performance demand with the minimum number of robots.

Algorithm 1: AD HOC PARTITIONING L

E = {E};
/* Initially E only contains one

partition which is the environment’s
itself */

while
∑

1≤α≤K V (aα, Eα) ≥M do
E′ = FIND HIGHEST VALUE SUBSET(E);
[E1, E2] =MIN PARTITION(E′);
REMOVE(E , E′);
ADD(E , E1);
ADD(E , E2);

end

Algorithm 2: FIND HIGHEST VALUE SUBSET

Ṽ (Emax) = −∞;
for each E′ ∈ E do

if Ṽ (Emax) < Ṽ (E′) then
Emax ← E′;

end
end
return Emax;

Algorithm 3: MIN PARTITION

[nm] = SIZE OF(E′);
min row partition value←∞;
min row partition index← 0;
for i from 1 to n− 1 do

(E1, E2)← DIVIDE FROM ROW(i, E′);
/* Divides E′ into two partitions

from row i */
if Ṽ (E1) + Ṽ (E2) < min row partition value
then

min column partition value←
Ṽ (E1) + Ṽ (E2);
min column partition index← i;

end
end
min column partition value←∞;
min column partition index← 0;
for j from 1 to m− 1 do

(E1, E2)← DIVIDE FROM COLUMN(j, E′);
/* Divides E′ into two partitions

from column j */
if Ṽ (E1) + Ṽ (E2) < min column partition value
then

min column partition value←
Ṽ (E1) + Ṽ (E2);
min column partition index← j;

end
end
if min row partition value <
min column partition value then

return DIVIDE FROM ROW
(min row partition index,E′);

else
return DIVIDE FROM COLUMN
(min column partition index,E′);

end

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We can think the experimental section as two parts. The
first part is learning the weights W = {w1, w2, ..., w8}.
And second part is where we test the performance of our
algorithms. Since each agent will patrol segments with dif-
ferent sizes, the environment set for the learning consists of
various smaller sized rectangles which are used separately to
observe a single agent’s performance. Therefore, we will use
environments which are n×m matrices where 2 ≤ n,m ≤ 10
and each element is the probability of an intrusion occurring.
The probability of an intrusion occurring is selected using
Uniform Distribution U(0, 1).

During the testing, we will use a larger environment for
our algorithm to partition in the smaller parts. thus, the size
of the environment is n × m where n = m = 16. Again
differently from the training environment we will have two
types of environment here. This will allow us to see the perfor-
mance of our algorithm in an environment where probability
distribution is different than the one we learned the weights.
While learning the weights, we used an environment where
the probabilities are generated using Uniform Distribution
which we will call “Uniform Environment”. In addition to
the Uniform Environments, now we will also introduce the
“Gradient Environment”, in which a focal point of gradient is
randomly selected and assigned with the maximum value 1,
the corners have the minimum value 0 and every other element
in the environment matrix has a value that gradually increases
as they move from corners to the focal point of the gradient.

Our framework is independent from the patrolling algorithm
the agents are using and can be used to partition the environ-
ment to any given patrolling algorithm. In our experiments, we
will be using a modified version of continuous area sweeping
algorithm proposed in [1]. In the algorithm we used in our
experiments, we keep record of each grid cell’s cumulative
expected probability of an intrusion occurring since the last
visit of an agent. This cumulative value represents the potential
of that cell containing an intrusion. The value representing the
potential of an intrusion is set to zero after an agent visits
the cell. Before committing an action, agent computes the
routes from its current location to all other grid cells. Each
route consist of cells whose total potential of an intrusion
is maximum en route to the destination with the minimum
distance. After computing the routes, each of their potentials
are divided with the time that is required to traverse that route
and the one with maximum potential of an intrusion is selected
as the action. This process is repeated until the end of the
simulation. Our algorithm differs from the one in [1] in terms
of observing the intrusions. [1] assumes that the agent can
observe any location that is in its sight, while in our algorithm
assumes the agent can only observe its current location.

B. Learning the Weights of the Single-Agent Algorithm

In order to learn the weights that are required to compute
Ṽ , we generated a random sample set of 1000 uniform n×m

TABLE I: The Weights

x1 x2 x3 x4 x5 x6 x7 x8

0.1517 -0.0096 5.7237 0.0013 59.7756 -31.2054 -39.4236 -6.1804

environments, where n and m are chosen randomly within the
range [2, 10] for each environment instance.

For each uniform environment instance, we run the agent
with the algorithm explained above for T = 1000 time
steps and calculate the value V for each instance as we
have explained in the Section III. Together with the V for
each instance, we also collect the properties xz for the same
instance. V values for all instances are stored in vector B and
values of properties xz are stored in matrix A, where Aw = B,
w being the weights we learn using the least-squares.

To measure the performance of the learned weights we use
N -fold cross validation. N -fold cross validation is a technique
that is used to measure the performance of a prediction model.
In this technique, the data set is divided into N subsets. In
each iteration, one subset is chosen for the test while the other
N − 1 subsets are used for training. This process is repeated
N times until each subset is used as a test subset once. In our
experiments we choose N to be 10.
Ṽ , the prediction of V , for the test subset that is computed

using the weights we learned differs slightly from the actual
V values of those environments. In order to evaluate the
performance of the learned weights, we calculate the error
of our prediction by comparing it to the actual values of V s.
This comparison shows that we can predict the V with error
of 1.406% with standard deviation of 0.1064%.

The weights we learn are shown in Table I.

C. Partitioning the Environment

In this section, we will describe Even Partitioning and
Random Partitioning as benchmarks and compare the results
of our algorithm with these benchmarks.

Even Partitioning divides the largest partition into two equal
n×m partitions such that | n−m | is minimized. This process
is repeated until the environment is partitioned into K parts
or a certain threshold for performance prediction is reached.

Random Partitioning divides the largest partition into two
partitions, where the cut is chosen randomly. This process is
repeated until the environment is partitioned into K parts or
a certain threshold for performance prediction is reached.

For comparing the result of our algorithm to Even and
Random Partitioning algorithms, we will use both the Uniform
Environments and the Gradient Environments. For each type
of environment, we will first run our algorithm using threshold
Vdesired = 300. Our algorithm will find the optimal number
of partitions K, that will give us a penalty lower than the
threshold Vdesired. After obtaining K value we will run the
Even and Random Partitioning algorithms with it. Using the
same K value allows us to observe how different partitioning
affects the outcome of the system, when they all have same
number of agents.

(a) Uniform Environment

(b) Gradient Environment

TABLE II: Ṽ values for each partitioning approach

Ad Hoc Partitioning Even Partitioning Random Partitioning

Uniform Environment 267.4± 18.9 321.3± 21.5 794.6± 179.2

Gradient Environment 272.2± 17.0 361.2± 34.2 813.9± 185.7

D. Simulating the Agents with the Partitions

In this section, we will repeat the procedure in the previous
part and again create two sets of data, Uniform Test Envi-
ronments and Gradient Test Environments, and will repeat the
procedure as before. We will first partition each environment
according to our three partitioning settings Greedy, Even and
Random Partitioning and then run a simulation where we will
randomly generate intrusions according to the probability of
an intrusion occurring for each location. Then we will run
the agents in separate settings for the same simulation and
measure each partitions’ and their agents’ performance. For
the simulation, we will create 10 new environments for both
Uniform Environments and Gradient Environments sets and
run each simulation for T = 100 steps and calculate: predicted
performance from our model Ṽ , the actual performance crite-
ria V and a reward function that is the average detection time
per intrusion. The most important performance measure is the
average detection time of the intrusions, since in a patrolling
task the objective is to detect events or intrusions as soon as
possible. Note that for each environment we compare each
setting within the same simulation, meaning the intrusions
occur exactly the same time and location for each settings’
simulation on the same environment.

The Tables III and IV show that the performance pre-
dicted using Ṽ function for each setting is proportional to
the outcome performance of each setting in the simulation.

TABLE III: Results on Uniform Environments

Ad Hoc Even Random

Ṽ 262.9± 19.0 319.3± 18.2 917.7± 200.1

V 553.1± 11.4 598.3± 12.1 692.2± 23.4

Detection time per intrusion 4.3± 0.1 4.7± 0.1 5.4± 0.1

TABLE IV: Results on Gradient Environments

Ad Hoc Even Random

Ṽ 270.8± 17.8 362.2± 29.0 820.1± 231.5

V 573.8± 11.7 629.9± 35.5 704.2± 37.9

Detection time per intrusion 4.7± 0.1 5.2± 0.3 5.8± 0.3

Although our prediction doesn’t give the exact performance
result, it does allow us to compare their performances, i.e., the
partitioning with lower Ṽ will also have lower V in the
experiments and will perform better with shorter detection
time.

The purpose of our patrolling task was to detect the in-
trusions as soon as they occur. In other words, we want to
minimize the detection time per intrusion. As you can see
from both tables above, Ad Hoc Partitioning achieved lower
detection time per intrusion by detecting the intrusions in
less than 5 time steps on average compared to both Even
Partitioning and Random Partitioning which takes them more
than 5 time steps to detect an intrusion on average, as we have
predicted using our Ṽ function.

Figure 1a is the sample environment we used to compare
the partitioning approaches. Lighter grid cells correspond
higher probabilities of an intrusion while the darker ones
have lower probability. Figures 1b, 1c and 1d show examples
of the partitions created by Ad Hoc, Even and Random

Partitioning respectively. As you can see our approach, Ad Hoc
Partitioning, partitions the lighter areas, which have higher
probability of an intrusion, into smaller partitions which allow
the robots to detect the intrusions earlier, while Even and
Random Partitioning approaches are not able to capture this
property of the environment.

(a) Environment (b) Ad Hoc (c) Even (d) Random

Fig. 1: Comparison of three partitioning approaches

VI. CONCLUSION AND FUTURE WORK

In this paper we have Ad Hoc Team Partitioning Problem,
where we modeled the performance of the agents, optimize
a heterogeneous agent team and partition the environment
among the agents. Using environmental properties, we suc-
cessfully manage to model a performance of an agent in a
completely new environment, without need of further training
of the model. The lack of need for further training allowed
us to partition the environment without any computationally
costly operation.

Our results show that the partitioning algorithm is not
trivial and even in a uniformly distributed environment, a even
partitioning cannot perform as well as our proposed solution.

In the future, we would like to extend the modeling to
various different algorithms and form the team in a heteroge-
neous way. In addition, we would like to compare our results
with other approaches in the literature. Finally, we plan to
extend our experiments to different applications using real
world robots.

ACKNOWLEDGMENTS

This work was partially supported by the A*STAR Sci-
ence and Engineering Research Council (SERC) grant no.
1225100001.

REFERENCES

[1] M. Ahmadi and P. Stone. Continuous Area Sweeping: A Task Definition
and Initial Approach. In Proceedings of the International Conference
on Advanced Robotics, pages 316–323, 2005.

[2] M. Ahmadi and P. Stone. A Multi-Robot System for Continuous Area
Sweeping Tasks. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1724–1729, 2006.

[3] H. Bast and S. Hert. The Area Partitioning Problem. In 12th Canadian
Conference on Computational Geometry, 1995.

[4] L. Fu and G. Ishkhanov. Fleet Size and Mix Optimization for Paratransit
Services. Transportation Research Record, 1884:39–46, 2004.

[5] S. Hert and V. Lumelsky. Polygon area decomposition for multiple-
robot workspace division. Special Issue of International Journal of
Computational Geometry & Applications on Applied Computational
Geometry, pages 437–466, 1998.

[6] J. Laake and A. Zhang. An Optimization Model for Strategic Fleet
Planning in Tramp Shipping. In Proceedings of the Annual Conference
of the Operations Research Society of New Zealand, 2013.

[7] S. Liemhetcharat and M. Veloso. Modeling and Learning Synergy
for Team Formation with Heterogeneous Agents. In Proceedings of
the International Conference on Autonomous Agents and Multiagent
Systems, pages 365–375, 2012.

[8] S. Liemhetcharat and M. Veloso. Forming an Effective Multi-Robot
Team Robust to Failures. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5240–5245, 2013.

[9] S. Liemhetcharat and M. Veloso. Synergy Graphs for Configuring Robot
Team Members. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, pages 111–118, 2013.

[10] S. Liemhetcharat and M. Veloso. Weighted Synergy Graphs for Effective
Team Formation with Heterogeneous Ad Hoc Agents. Journal of
Artificial Intelligence, 208(2014):41–65, 2014.

[11] T. Service and J. Adams. Coalition formation for task allocation: theory
and algorithms. Journal of Autonomous Agents and Multi-Agent Systems,
22:225–248, 2011.

