
Allocating Training Instances to
Learning Agents that Improve Coordination

for Team Formation

Somchaya Liemhetcharat1 and Manuela Veloso2

1Institute for Infocomm Research, A*STAR, Singapore
liemhet-s@i2r.a-star.edu.sg

2Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
veloso@cs.cmu.edu

Abstract. Agents can learn to improve their coordination with their
teammates and increase team performance. We are interested in form-
ing a team, i.e., selecting a subset of agents, that includes such learning
agents. Before the team is formed, there are finite training instances that
provide opportunities for the learning agents to improve. Agents learn
at different rates, and hence, the allocation of training instances affects
the performance of the team formed. We focus on allocating training
instances to learning agent pairs, i.e., pairs that improve coordination
with each other, with the goal of team formation. We formally define the
learning agents team formation problem, and compare it with the multi-
armed bandit problem. We consider learning agent pairs that improve
linearly and geometrically, i.e., the marginal improvement decreases by
a constant factor. We contribute algorithms that allocate the training
instances, and compare against algorithms from the multi-armed bandit
problem. In extensive simulations, we demonstrate that our algorithms
perform similarly to the bandit algorithms in the linear case, and out-
perform them in the geometric case, thus illustrating the efficacy of our
algorithms.

1 Introduction

Multi-agent teams have been applied to various domains, such as task alloca-
tion and multi-agent planning. Typically, the capabilities of the agents are fixed
and assumed to be known a priori, and the performance of a team is the sum of
the single-agent capabilities. The Synergy Graph model was recently introduced,
where team performance depends on single-agent capabilities and the pairwise
compatibility among the agents [4]. The single-agent capabilities and pairwise
compatibility were assumed to be fixed and initially unknown, and learned from
observations, with the goal of forming a team after learning the team perfor-
mance model. In this work, we use the term agents to refer to physical robots,
simulated robots, and software agents.

What if some agents are learning agents, i.e., they are capable of learning
to improve their coordination with their teammates? We are interested in team

2 Allocating Training Instances to Learning Agents for Team Formation

formation, i.e., selecting a subset of agents, with such learning agents. Learning
agents, which we detail in the related work section, improve coordination by
modeling their teammates and varying their behaviors to maximize the team
performance. We consider learning agent pairs that improve their coordination
with each other. By doing so, we encapsulate pairs of learning agents that si-
multaneously learn, as well as pairs consisting of a learning agent and a regular
agent.

In this paper, we formally define the learning agents team formation problem,
where the goal is to form a multi-agent team, and there is a fixed number of
training instances available before the team is formed. Each training instance is
allocated to a learning agent pair to improve their coordination. A motivating
example is from sports, where a coach has limited opportunities to train his team
before the actual game. The coach allocates training instances to pairs (e.g., a
pair that practices passing the ball upfield in soccer), and the pair improve their
coordination. When all the training is done, the coach selects which members
form the team.

Hence, the allocation of training instances has a large impact on the perfor-
mance of the formed team. In particular, a team with low performance before
training may outperform all other teams after training, if it is comprised of
learning agent pairs that have high learning rates, i.e., large improvements in
coordination per training instance. However, the heterogeneous learning rates
of learning agent pairs are initially unknown, and have to be learned from ob-
servations after each training instance. Thus, solving the learning agents team
formation problem requires balancing exploring and exploiting, while modeling
the learning rates and keeping the end goal of team formation in mind.

We consider scenarios where learning agent pairs improve linearly, and where
learning agent pairs improve geometrically, i.e., the marginal improvement de-
creases by a constant factor 0 < γ < 1 after each training instance. We consider
the optimal allocation of training instances if the learning rates are known, and
introduce algorithms that allocate training instances while modeling the learning
rates, in both the linear and geometric scenarios. There are parallels between
the learning agents team formation problem and the multi-armed bandit prob-
lem, namely by considering each learning agent pair as an arm and a training
instance as pulling an arm. However, a key difference is that our goal is to form
the team with optimal performance, while the goal of the multi-armed bandit
problem is to maximize the cumulative sum of rewards. We compare our algo-
rithms with the upper confidence bound and Thompson sampling algorithms
from the multi-armed bandit problem.

We conduct experiments in simulation, varying the number of learning agent
pairs and training instances, and whether learning agent pairs improve linearly
or geometrically. We demonstrate that the algorithms we contribute perform
similarly to the bandit algorithms when improvements in coordination are linear,
and outperform them in the geometric scenario. Our algorithms perform close to
optimal without having a priori information about the heterogeneous learning

Allocating Training Instances to Learning Agents for Team Formation 3

rates, thus illustrating the efficacy of our algorithms in the learning agents team
formation problem.

The layout of our paper is as follows: Section 2 discusses related work and
how our work builds upon prior research on learning agents. Section 3 formally
defines the learning agents team formation problem and gives an overview of our
approach. Sections 4 and 5 consider learning agent pairs that improve linearly
and geometrically. Section 6 presents our experiments and results, and Section 7
concludes.

2 Related Work

Learning agents have been studied in various fields, such as game theory, multi-
agent planning, and reinforcement learning, e.g., [6, 10, 8]. The ad hoc problem
was recently introduced, where an autonomous agent learns to collaborate with
previous unknown teammates [7]. An ad hoc agent can lead multiple teammates
to select the optimal joint action [1], and an ad hoc agent can also model its
teammates and change its policy to optimize a team goal [3]. While we discuss ad
hoc agents in detail, our work is not specific to ad hoc agents and is applicable to
general learning agents that learn to improve their coordination with teammates.

We are interested in modeling learning agents for team formation. Our per-
spective is different from other learning agents research in that they typically
focus on how an agent can learn and adjust its behaviors based on its team-
mates, while our focus is on modeling the impact of learning agents on the
team, and allocating training instances for the learning agents to improve their
coordination with teammates, and hence improve team performance. We use the
recently-introduced Synergy Graph model [4, 5] to compute team performance,
where team performance is beyond the sum of single-agent capabilities, but also
depends on pairwise compatibilities.

There are similarities between the learning agents team formation problem
and the multi-armed bandit problem, which we detail in the next section. We
consider two algorithms from the multi-armed bandit literature: the upper con-
fidence bound (UCB) [2] and Thompson sampling (TS) [9]. Each arm in the
multi-armed bandit problem has an unknown probability p that is estimated,
and UCB pulls the arm with the highest upper confidence bound on p. TS
draws a sample for each arm based on its estimated distribution, and pulls the
arm with the highest sample. We compare our algorithms for the learning agents
team formation problem against the UCB and TS algorithms.

3 Problem Definition and Our Approach

In this section, we formally define the learning agents team formation prob-
lem, give an overview of our approach, and compare the learning agents team
formation problem with the multi-armed bandit problem.

4 Allocating Training Instances to Learning Agents for Team Formation

3.1 Learning Agents Team Formation Problem

We are interested in team formation, i.e., selecting a subset of agents, in order
to maximize a performance function. We begin with the set of agents and the
definition of a team:

Definition 1. The set of agents is A = {a1, . . . , aN}, where each ai ∈ A is
an agent.

Definition 2. A team is any subset A ⊆ A.

The performance of a team depends on its composition, and in this work, we
modify the Synergy function of the Synergy Graph model [4]:

Definition 3. The performance P (A) of a team A is:

P (A) =
1(|A|
2

) ∑
{ai,aj}∈A

P2(ai, aj), such that

P2(ai, aj) = φi,j · (Ci + Cj)

where φi,j ∈ R+ is the coordination level between ai and aj, and Ci, Cj are
Normally-distributed variables representing ai and aj’s capabilities at the task.

When agents learn to perform better over time, there are two possible reasons:
the agent learns about the task and improves its capability Ci at the task; or
the agent learns to coordinate with its teammates better and improves φi,j . We
are interested in the latter, where agents learn to coordinate better with their
teammates. We use the modified Synergy function to compute team performance
for two main reasons. First, the performance of a team goes beyond the sum of
single-agent capabilities, i.e., the capabilities of an agent pair are weighted by the
coordination between them. Second, improvements in coordination are modeled
with changes in φi,j .

We focus on pairs of agents that learn to improve their coordination. By do-
ing so, we focus on the improvement of the pair, without doing credit assignment
on which of the pair (or both) is actually learning. Research on ad hoc agents,
e.g., [3], demonstrated that changing the behavior of an agent in response to
a teammate improves team performance. An ad hoc agent ai would be repre-
sented by considering all agent pairs that include it (e.g., {ai, aj} , {ai, ak}). Our
formulation thus encompasses ad hoc agents, and other learning agents, such
as pairs of agents that can only improve performance with each other and no
other agents. We use the term learning agents to refer to agents that learn to
coordinate better with teammates.

We now define a learning agent pair:

Definition 4. A learning agent pair is a pair of agents {ai, aj} ∈ A2. The
set of learning agent pairs is L ⊆ A2.

Learning agent pairs improve their performance when they are allocated
training instances, which we define next:

Allocating Training Instances to Learning Agents for Team Formation 5

Definition 5. A training instance k ∈ {1, . . . ,K} is an opportunity for a
learning agent pair {ai, aj} ∈ L to improve its coordination.

The coordination of a learning agent pair increases after they are allocated
training instances:

Definition 6. The coordination of a learning agent pair {ai, aj} ∈ L after the

kth training instance is φ
(k)
i,j .

Note that if the training instance k was allocated to {ai, aj} ∈ L, then φ
(k)
i,j >

φ
(k−1)
i,j , otherwise φ

(k)
i,j = φ

(k−1)
i,j .

Training instances are allocated to learning agent pairs, and observations are
obtained:

Definition 7. An observation oi,j ∼ P2(ai, aj) is obtained for each training
instance that is allocated to the learning agent pair {ai, aj} ∈ L.

Since {ai, aj} are learning, φi,j increases as a function of the number of train-
ing instances allocated to {ai, aj}, and oi,j similarly increases on expectation.

There are K > 0 training instances, and the goal is to form the optimal team
of given size n∗ after K instances:

Definition 8. The optimal team A∗K is the team of size n∗ with the highest
mean performance after K training instances.

Since learning agent pairs improve their coordination given training instances,
the performance of a team A ⊆ A at the end of the training instances depends
on the number of learning agent pairs in A, and the number of training instances
each learning agent pair is allocated out of K.

3.2 Overview of Approach

We use the modified Synergy function to model the performance of multi-agent
teams [4]. However, our approach is general and applicable to other multi-agent
team models:

1. We model the coordination of learning agent pairs as φ
(k)
i,j = φ

(0)
i,j +Fi,j(ki,j , li,j),

where:
– φ

(0)
i,j is the initial coordination level of {ai, aj};

– Fi,j : Z+
0 ×R+ → R+ is the coordination gain function (we consider Fi,j

being a linear or geometric function);
– ki,j ≤ k is the number of training instances allocated to {ai, aj} after
k ≤ K training instances;

– li,j is an initially-unknown learning rate of {ai, aj};
2. We iteratively allocate training instances using estimates of li,j ;
3. We use the observations oi,j after each training instance to improve our

estimate of li,j .

We assume that the capability Ci of all agents ai ∈ A, coordination gain

function Fi,j and initial coordination φ
(0)
i,j of all {ai, aj} ∈ L, and coordination

φα,β of non-learning agent pairs {aα, aβ} /∈ L are known a priori. The only
unknowns are li,j .

6 Allocating Training Instances to Learning Agents for Team Formation

3.3 Comparison with Multi-Armed Bandits

There are similarities between the learning agents team formation problem and
the multi-armed bandit problem, where learning agent pairs are arms in the
bandit problem:

1. There are a fixed number of trials (training instances);
2. Each trial improves the estimate of li,j ;
3. There is an optimal allocation of the K trials if all li,j were known.

However, there is a key difference between the two problems: the goal of the
multi-armed bandit problem is to maximize the cumulative sum of rewards,
while the goal of the learning agents team formation problem is to maximize the
mean performance of a team after the K trials.

Pulling an arm in the multi-armed bandit problem always improves the final
score on expectation. In the learning agents team formation problem, assigning
an agent pair a training instance improves their coordination, but may not affect
the final team’s score. For example, if the agent pair {ai, aj} received ki,j ≤ K
training instances, but the team A that is formed does not contain the pair
{ai, aj}, then the ki,j training instances did not add to the final score.

4 Learning Agents that Improve Linearly

In this section, we consider learning agent pairs that improve their coordination

linearly: φ
(k)
i,j = φ

(0)
i,j + Fi,j(ki,j , li,j), where Fi,j(ki,j , li,j) = ki,j · li,j . First, we

consider the optimal allocation of K training instances assuming all li,j are
known. Next, we adapt two algorithms from the bandit literature to the learning
agents team formation problem, and contribute an algorithm that approximates
the optimal allocation. We consider non-linear (i.e., geometric) improvement
in coordination in the next section, and introduce other algorithms that are
applicable to the geometric case. We use a Kalman filter to provide estimates

φ̂
(k)
i,j and l̂i,j of φ

(k)
i,j and li,j respectively, and the Kalman filter is updated with

new observations oi,j .

4.1 Computing the Optimal Allocation

Suppose that ∀ {ai, aj} ∈ L, li,j is known. To compute the optimal allocation,
we iterate through every possible team A, and compute the allocation of the K
training instances given A. The allocation kA∗ corresponding to the team A∗

with the maximum score is then the optimal allocation.
When there are no learning agent pairs in A, the allocation does not matter.

Otherwise, the optimal allocation is to pick the best learning agent pair in A
and allocate all K training instances to it, as shown below:

Theorem 1. kA = ({ai, aj} , . . . , {ai, aj}) is the optimal allocation of training
instances, where {ai, aj} = argmax{aα,aβ}∈L∩A2(lα,β(µα + µβ)), where Ci ∼
N (µi, σ

2
i) and Cj ∼ N (µj , σ

2
j).

Allocating Training Instances to Learning Agents for Team Formation 7

Proof. Sketch: The performance of the teamA increases linearly by lα,β(µα + µβ)
when a training instance is allocated to {aα, aβ}. Thus, allocating all training
instances to {ai, aj} provides the most performance improvement.

4.2 Allocating Training Instances

We consider two algorithms from the multi-armed bandit problem: the Upper
Confidence Bound algorithm [2] and the Thompson sampling algorithm [9]. Next,
we contribute an algorithm that solves the learning agents team formation prob-
lem by approximating the optimal allocation.

Algorithms from the Bandit Problem The computation of the UCB in the
learning agents team formation problem is slightly different from the UCB algo-
rithm in the multi-armed bandit problem, because the coordination of learning
agent pairs change as training instances are allocated to them, while the prob-
abilities are constant in the multi-armed bandit problem. Since the optimal so-
lution is to always allocate all training instances to a single learning agent pair,
the modified UCB estimates the UCB of a learning agent pair if all remaining
training instances were allocated to it. The pair with the highest UCB is then
allocated the training instance.

In the modified Thompson sampling (TS) algorithm, the estimate of the final
coordination of a learning agent pair is computed by summing the estimate of its
current coordination φ̂i,j and the estimate of the learning rate l̂i,j . The modified
TS then retrieves a sample from the distribution and the learning agent pair
with the highest sample is trained.

Learning Agents Team Formation Algorithm Algorithm 1 shows the pseu-
docode for approximating the optimal solution to the learning agents team for-
mation problem. For each learning agent pair, the algorithm computes the max-
imum coordination of the pair, using the upper confidence bound of the coordi-
nation and learning rate estimates, assuming all remaining training instances are
allocated to it (Line 4), i.e., summing the mean and standard deviation of the

current estimates of φ
(k)
i,j and li,j . For all other learning pairs, the mean of the

current estimates of the coordination are used (Line 5). The best possible team
of size n∗ with such an arrangement is found (Lines 6–9), and the corresponding
learning agent pair is allocated the training instance (Line 10). The Kalman fil-
ter is updated using the observation (Line 11). The computational complexity of
ApproxOptimalLinear is O(K|L|

(
N
n∗

)
n∗2), where the

(
N
n∗

)
n∗2 term comes from

Line 6, and could be reduced to n∗2 by using the Synergy Graph team formation
algorithm that approximates the optimal team [4], instead of finding the optimal
team. We show the pseudo-code as such to ensure optimality, but if runtime is
a concern then the approximation can be used.

The key difference between ApproxOptimalLinear and UCB is that in the

latter, the pair {ai, aj} with the highest φ̃
(K)
i,j (as computed in Line 4 of Algo. 1)

8 Allocating Training Instances to Learning Agents for Team Formation

Algorithm 1 Estimate learning rates to approximate the optimal allocation of
training instances

ApproxOptimalLinear(K)

1: for k = 1, . . . ,K do
2: (Abest, vbest)← (∅,−∞)
3: for all {ai, aj} ∈ L do

4: φ̃
(K)
i,j ← (E(φ̂

(k)
i,j) +

√
var(φ̂

(k)
i,j)) + (K − k + 1) · (E(l̂i,j) +

√
var(l̂i,j))

5: φ̃
(K)
α,β ← E(φ̂

(k)
α,β)∀ {α, β} 6= {i, j}

6: Ai,j ← argmax(A⊆A s.t. |A|=n∗)E(P̃ (A))

7: if E(P̃ (Ai,j)) ≥ vbest then
8: pairbest ← {ai, aj}
9: (Abest, vbest)← (A,E(P̃ (Ai,j)))

10: ok ← Train(pairbest)
11: KalmanUpdate(pairbest, ok)
12: return Abest

would be allocated the training instance. In our algorithm, the upper confidence
bound of a learning agent pair’s coordination is used to estimate the perfor-
mance of teams, and the training instance is allocated to the corresponding
learning agent pair whose team has the highest estimated performance. Hence,
the training instance is not always allocated to the learning agent pair with the
highest upper confidence bound.

5 Agents that Improve Geometrically

In the previous section, we considered learning agent pairs whose coordination
increased linearly with each training instance. However, a linear improvement
may not reflect learning in many situations — typically there is a large amount
of improvements in the early stages, but the marginal improvement decreases as
more learning is done. In this section, we consider learning agent pairs that have
a geometric improvement in coordination.

Specifically, we consider φ
(k)
i,j = φ

(0)
i,j + Fi,j(ki,j , li,j) where the coordination

gain function Fi,j(ki,j , li,j) =
∑ki,j
k=1 li,j · γ

k−1
i,j . The coordination function is non-

linear, and with each training instance, the learning agent pair’s coordination is
increased by a marginally smaller amount, i.e., the coordination gain between
the kth and (k + 1)th training instance has a factor of 0 < γi,j < 1 difference.
Such a formulation brings about a new feature to the problem: if |L| ≥ 2, it is
not always optimal to always train the same learning agent pair since a different
pair may provide a higher increase in team performance. We are interested to
consider how well the algorithms in the previous section will perform with such
geometric improvements in coordination.

Allocating Training Instances to Learning Agents for Team Formation 9

While the learning agents improve geometrically, the Kalman filter can still
be used to estimate the learning rates, by assuming that the decay rate γi,j is
known, so only li,j is unknown, similar to the linear case.

First, we explain how the algorithms of the previous section are modified
to fit the new problem. Second, we consider the optimal allocation of training
instances assuming all learning rates li,j and decay factors γi,j are known, and
third, we contribute an algorithm that solves the learning agents team formation
problem with geometric learning using the optimal solution as a guide.

5.1 Applying the Linear Algorithms to Agents with Geometric
Improvements

The algorithm we contributed in the previous section, ApproxOptimalLinear
(Algorithm 1), was designed for learning agent pairs that improved their coor-
dination linearly. However, the algorithm only needs to be modified slightly to
apply to learning agent pairs that improve their coordination geometrically.

Line 4 of Algo. 1 computes the estimated upper confidence bound of the
learning agent pair’s coordination assuming all remaining training instances are
allocated to the pair. For geometric coordination improvements, the upper con-

fidence bound of the coordination should be: φ̃
(K)
i,j ← (E(φ̂

(k)
i,j) +

√
var(φ̂

(k)
i,j)) +

(E(l̂i,j) +
√
var(l̂i,j)) ·

∑K−α+1
k′=1 γk

′−1
i,j

Similar modifications also apply to the UCB and TS. These changes allow
the algorithms to compute the final estimated coordination of the learning agent
pairs when the improvements are geometric, while preserving the nature of the
algorithms. We compare the performance of these algorithms in the geometric
case in the experiments.

5.2 Optimally Allocating Training Instances

The changes to the algorithms described above provide an allocation of training
instances in the geometric case, but in their computations, they assume that a
learning agent pair is allocated the remainder of the training instances. In this
subsection, we analyze what the optimal allocation of training instances should
be in the geometric case.

We first consider the optimal allocation of training instances, given a fixed
team A of size n∗.

The coordination gain Fi,j(ki,j , li,j) =
∑ki,j
k=1 li,j · γ

k−1
i,j , which can be simpli-

fied to Fi,j(ki,j , li,j) = li,j ·
1−γ

ki,j
i,j

1−γi,j .

The performance of A is:

P (A) =
1(|A|
2

) ∑
{ai,aj}∈A

(φ
(0)
i,j Ci,j + li,j ·

1− γki,ji,j

1− γi,j
Ci,j)

10 Allocating Training Instances to Learning Agents for Team Formation

Since the only variable is ki,j (the allocation of training instances), the opti-

mal allocation Allocation(A,K) givenA is: argmax
∑
{ai,aj}∈A2∩L li,j ·

1−γ
ki,j
i,j

1−γi,j Ci,j
such that

∑
{ai,aj}∈A2∩L ki,j = K.

With such a formulation, the optimal allocation of training instances given K
can be found using a non-linear integer solver. When A is unknown, the optimal
allocation is:

OptGeometric(K) = argmaxA⊆A s.t. |A|=n∗Allocation(A,K)

However, computing the optimal allocation is infeasible given that the non-
linear integer solver is run on every possible team, thus having a runtime of
O(
(
N
n∗

)
2|L|).

5.3 Allocating Training Instances to Agents that Improve
Geometrically

We described the optimal allocation of training instances in the geometric case,
that requires a priori knowledge of the learning rates li,j . Algorithm 2 uses the
approach of the optimal solution to allocate the training instances.

Algorithm 2 Approximate the optimal solution with geometric learning rates

ApproxOptimalGeometric(K)

1: for k = 1, . . . ,K do
2: (Abest, vbest)← (∅,−∞)
3: for all A ⊆ A s.t. |A| = n∗ do
4: (vA, k

′
k, . . . , k

′
K)← Allocation’(A,K − k + 1)

5: if vA ≥ vbest then
6: pairbest ← k′k
7: (Abest, vbest)← (A, vA)
8: ok ← Train(pairbest)
9: KalmanUpdate(pairbest, ok)

10: return Abest

The function Allocation’ (Line 4 of Algo. 2) uses a non-linear integer solver
to allocate the remaining training instances, and is similar to the Allocation
function of the optimal solution, except that the upper confidence bound of the

learning rates are used, i.e., E(l̂i,j) +
√
var(l̂i,j), since li,j is unknown and being

estimated by the Kalman filter. Allocation’ returns the best allocation returned
by the integer solver (k′k, . . . , k

′
K), and the value of the final team (vA) if the

allocation is performed. The best allocation is sorted so that the learning agent
pair with the highest contribution gain from the allocation is returned.

However, since the non-linear integer solver is run for all possible teams A,
and for K iterations, the algorithm ApproxOptimalGeometric is infeasible when
the number of possible teams is large, having a runtime of O(K

(
N
n∗

)
2|L|). We

Allocating Training Instances to Learning Agents for Team Formation 11

present ApproxOptimalGeometric as a baseline to consider if computation was
not an issue, while still preserving the nature of the learning agents team forma-
tion problem, i.e., that the learning rates of the learning agent pairs are initially
unknown. We later show in our experiments that our ApproxOptimalLinear al-
gorithm (Algo. 1) has similar performance with a much smaller runtime.

6 Experiments and Results

This section describes the experiments we conducted to compare the performance
of ApproxOptimalLinear and ApproxOptimalGeometric against UCB and TS.

6.1 Experimental Setup

To generate the agent capabilities and pairwise coordination, we used a Synergy
Graph [4] with weighted edges of |A| = 10 vertices, with the agent capabilities
Ci ∼ N (µi, σ

2
i) such that µi ∈ (m2 ,

3m
2) and σ2

i ∈ (0,m2) where the multiplier
m = 100. We used the Synergy Graph model as it provided a means to compute
the coordination between agent pairs, and generated the agent capabilities with
a large variation among the agents.

We varied |L|, the number of learning agent pairs, to be between 5 and 9, and
randomly selected the |L| learning agent pairs. We limited the size of |L| since
the computation of the optimal allocation is exponential in the geometric case.
For each learning agent pair, we randomly sampled their learning rates, such that
in the linear case, the learning rate li,j ∈ (0, 0.1), and in the geometric case, the
initial learning rate li,j ∈ (0, 1) and the decay rate γi,j ∈ (0.9, 0.95). The bounds
of the learning and decay rates were chosen such that the coordination gains
after allocating the training instances do not completely overshadow the initial
team performance before learning, and that the learning rates do not decay too
quickly in the geometric case.

For each value of |L|, we generated 50 Synergy Graphs for the linear case
and 50 Synergy Graphs for the geometric case, and the corresponding variables
for the learning agent pairs. We also varied the number of training instances,
i.e., K = 20, 40, . . . , 280, 300.

6.2 Evaluating the Algorithms

Figure 1 shows the performance of teams formed by the various algorithms when
the learning agent pairs increase their coordination linearly, and when the num-
ber of learning agent pairs |L| = 5. The results were similar for other values of
|L|, so we only present |L| = 5. The dotted orange line shows the performance of
the optimal allocation. ApproxOptimalLinear has a similar performance to both
UCB and TS, showing that considering the compatibility of a learning agent
pair is sufficient to solve the problem, without having to consider the overall
performance of the team. We believe this is due to the linear setup, as shown
from how the optimal allocation assigns all the training instances to a single pair.

12 Allocating Training Instances to Learning Agents for Team Formation

Fig. 1: The performance of teams formed with various algorithms when coordi-
nation increases linearly.

Further, we believe the geometric case, which we discuss next, is more realistic
in terms of the improvements of learning agents.

When learning agent pairs increase their coordination geometrically, Approx-
OptimalLinear significantly outperforms UCB and TS. Figure 2 shows the per-
formance of the various algorithms. The optimal geometric allocation is shown
with the dotted black line, and the optimal linear allocation is shown with the
dotted orange line. ApproxOptimalLinear, UCB, and TS estimate the learning
rates and allocated the training instances iteratively, while the optimal linear
allocation knows the learning rates and computes a single learning agent pair
that receives all the training instances. UCB and TS do not perform well in
the geometric case, being close to the optimal linear allocation, even though
the algorithms were updated for the geometric case (Section 5.1). Hence, our
results show that it is important to keep the team formation goal in mind while
allocating training instances in the geometric case.

The dark purple line shows the performance of ApproxOptimalGeometric.
ApproxOptimalLinear performs slightly worse than ApproxOptimalGeometric.
Hence, even though the optimal geometric solution and approximate geometric
solution requires a non-linear integer solver, an allocation algorithm such as
ApproxOptimalLinear is sufficient.

We repeated the experiments for |L| = 6, . . . , 9 and noted similar trends, and
similarly when the other variables of our experiments were changed, e.g., the
multiplier m used to generate agent capabilities. Thus, through our experiments,

Allocating Training Instances to Learning Agents for Team Formation 13

Fig. 2: The performance of teams formed with various algorithms when coordi-
nation increases geometrically.

we showed that our algorithm, ApproxOptimalLinear, is suitable for solving the
learning agents problem in both the linear and geometric case, performing close
to optimal in both scenarios. Further, the computational cost for our algorithm is
polynomial even in the geometric case where the optimal solution is exponential.

7 Conclusion

We are interested in agents that learn to coordinate with their teammates, in
particular, pairs of agents that improve their coordination through training in-
stances. We formally defined the learning agents team formation problem, where
the goal is to allocate a fixed number of training instances to learning agent pairs
that have heterogeneous capabilities and learning rates, so as to form a team,
i.e., select a subset of the agents, that maximizes the team performance.

We considered two categories of learning agent pairs, those that improved
their coordination linearly, and those that improved geometrically, i.e., the marginal
improvement decreased by a constant factor with each training instance. We de-
fined the optimal allocation of training instances in both categories, assuming
that the learning rates of the agent pairs are known. We contributed two algo-
rithms to solve the learning agents team formation problem, one for the linear
category and one for the geometric category, that estimate the learning rates
and allocate the training instances.

There are similarities between the learning agents team formation and multi-
armed bandit problems, and we compared our algorithms against the upper con-

14 Allocating Training Instances to Learning Agents for Team Formation

fidence bound and Thompson sampling algorithms from the multi-armed bandit
problem. In extensive simulated experiments, we showed that our algorithms
performed similarly to the bandit algorithms in the linear category, and outper-
formed them in the geometric category, finding near-optimal solutions in both
categories, demonstrating the efficacy of our algorithms in the learning agents
team formation problem.

Acknowledgments

This work was partially supported by the Air Force Research Laboratory under
grant number FA87501020165, by the Office of Naval Research under grant num-
ber N00014-09-1-1031, and the Agency for Science, Technology, and Research
(A*STAR), Singapore. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity. This work was supported by the A*STAR Com-
putational Resource Centre through the use of its high performance computing
facilities.

References

1. N. Agmon and P. Stone. Leading Ad Hoc Agents in Joint Action Settings with Mul-
tiple Teammates. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems, pages 341–348, 2012.

2. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time Analysis of the Multiarmed
Bandit Problem. Machine Learning, 47(2-3):235–256, 2002.

3. S. Barrett, P. Stone, and S. Kraus. Empirical Evaluation of Ad Hoc Teamwork
in the Pursuit Domain. In Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems, pages 567–574, 2011.

4. S. Liemhetcharat and M. Veloso. Modeling and Learning Synergy for Team For-
mation with Heterogeneous Agents. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems, pages 365–375, 2012.

5. S. Liemhetcharat and M. Veloso. Weighted Synergy Graphs for Role Assignment
in Ad Hoc Heterogeneous Robot Teams. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 5247–5254, 2012.

6. L. Panait and S. Luke. Cooperative Multi-Agent Learning: The State of the Art.
Journal of Autonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

7. P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein. Ad Hoc Autonomous Agent
Teams: Collaboration without Pre-Coordination. In Proceedings of the Interna-
tional Conference on Artificial Intelligence, 2010.

8. M. Tan. Multi-agent Reinforcement Learning: Independent vs. Cooperative Agents.
In Proceedings of the International Conference on Machine Learning, pages 330–
337, 1993.

9. W. Thompson. On the Likelihood that One Unknown Probability Exceeds Another
in View of the Evidence of Two Samples. Biometrika, 25(3/4):285–294, 1933.

10. K. Tuyls and A. Nowe. Evolutionary Game Theory and Multi-Agent Reinforcement
Learning. Journal of Knowledge Engineering Review, 20(1):65–90, 2005.

