
Gesture-Based Attention Direction for a Telepresence Robot: Design
and Experimental Study

Keng Peng Tee, Rui Yan, Yuanwei Chua, Zhiyong Huang, Somchaya Liemhetcharat

Abstract— The application of robotics to telepresence can
enhance user interaction experience by providing embodiment,
engaging behaviors, automatic control, and human perception.
This paper presents a new telepresence robot with gesture-based
attention direction to orient the robot towards attention targets
according to human deictic gestures. Gesture-based attention
direction is realized by combining Localist Attractor Network
(LAN) and Short-Term Memory (STM). We also propose audio-
visual fusion based on context-dependent prioritization among
the 3 types of audio-visual cues (gesture, speech source location,
head location). Experiment results are very promising and show
that i) the average gesture recognition rate is 92%, i) gesture-
based attention direction rate is 90%, and that ii) only by
considering the 3 types of audio-visual cues together can the
robot perform on par with a human in directing attention to
the correct person in a meeting scenario.

I. INTRODUCTION

Telepresence technology, which enables people to com-
municate face-to-face over remote distances, is gaining im-
portance and popularity as a useful tool at home and in
the workplace for increasing productivity and connecting
people. The application of robotics-related technologies to
telepresence can enhance user interaction experience by pro-
viding embodiment, engaging behaviors, automatic control,
and human perception.

To this end, research-oriented telepresence robot platforms
have been developed to study human-robot interaction. The
MeBot [1] is a small mobile articulated telerobot that allows
the operator to express non-verbal cues such as hand and
head gestures. The Texai robot is a mobile platform with
a screen at standing-height, and can be controlled to move
around a remote office to attend meetings. Powered by
HARK, an advanced audition software with sound source
localization, tracking and separation capabilities, a sophis-
ticated dialogue management and auditory awareness has
been demonstrated on the Texai robot [2]. To increase
robustness of speaker tracking, audiovisual approaches have
also been proposed. Omnidirectional vision combined with
sound localization has been shown to track speakers as they
are move around the robot [3]. Computational AudioVisual
Scene Analysis (CAVSA) based on proto-objects and short
term memory [4] has been designed to track speakers even
if they disappear for a while. Our previous work studied
audio-visual attention control based on speech source lo-
calization and visual face tracking for a telepresence robot,
and presented a user study showing facilitation of show-and-
tell and increased presence [5]. Audio-visual integration has
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Fig. 1. Desktop telepresence robot prototype with tablet and Kinect.

been shown to improve robot audition by increasing speech
recognition rate and robustness against noisy conditions [6].
Besides individual robot platforms, a multi-robot system
has also been proposed as mobile telepresence solution for
following multiple users and keeping them in view [7]. The
above works focused on audiovisual human tracking, and do
not consider the use of gestures to direct attention.

The use of gestures to direct attention has been studied
in some robot applications, including instructing the robot
on which object to grasp [8], and pointing to a location on
the ground for a robot to move to [9] . Vision-based gesture
recognition using self-organizing feature map has been used
to control an entertainment robot AIBO to perform discrete
actions [10]. Gesture recognition has been studied using
Localist Attractor Network (LAN) to control a simulated
mobile robot to perform simple actions like move, stop,
and turn left or right [11]. Gesture-based robot control has
also been demonstrated using a wearable sleeve interface
with EMG and IMU sensors [12] and wirelessly transmitted
accelerometer signals from users’ hands [13]. Instead of rec-
ognizing human gestures, recognition of full-body gestures
of a small humanoid robot is studied in [14] to allow playful
interactions with humans. These works focus only on the
gesture recognition problem and do not consider fusion with
other attention direction modalities.

In this paper, we propose gesture-based attention direction
as a natural mode of human-robot interaction, and fusing
this interaction mode with other active attention-directing
behaviors (speech source localization and visual tracking)
to enhance the overall telepresence experience. We highlight
the contributions of this paper as follows:

1) Design and proof-of-concept of a novel telepresence
robot with gesture-based attention direction enabling
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automatic orienting of the robot towards attention
targets according to human deictic gestures.

2) Fusion of gesture-based attention direction with speech
source localization and head tracking to allow group
videoconferencing scenarios. To the best of the au-
thors’ knowledge, this is the first desktop telepresence
robot to provide all 3 features together.

3) Quantitative empirical evaluation of the performance
of the complete fused system in a structured meeting
scenario with human participants.

II. SYSTEM DESIGN

It is the object of this paper to enhance telepresence
robots with natural interaction modes and automatic control
of attention focus based on natural conversation cues. Human
gestures are useful cues for the robot to switch attention
seamlessly to another person. In one use case, a speaker who
has finished his speaking turn can pass the turn to another
speaker in the same room. In another use case, a speaker
who is addressing a group of listeners in a remote room can
use gestures to alternate attention amongst the listeners.

We highlight the design requirements of the robotic system
as follows:

1) Fluid and quick-stabilizing point-to-point motion with-
out vibrations/oscillations

2) Ability to visually track a moving human in the cam-
era’s field of view

3) Ability to localize a speech source and direct attention
to the (out-of-view) speaker

4) Ability to recognize deictic gestures and direct atten-
tion to the target person

In our previous work [5], we have developed a desktop
robot for group telepresence that addressed the first 3 points.
Therefore, it is the focus of this work to address the last
requirement, namely the provision of gesture based attention
direction and fusion with speech source localization and
visual head tracking.

A. Telepresence Robot Hardware

The desktop telepresence robot consists of a pan-tilt unit,
computing unit, microphone array, camera, audio interface,
motor controller board, and tablet. The pan axis is perpen-
dicular to the table while the tilt axis lies on a plane parallel
to the table. The tablet, which provides video steaming of
users at the far end through built-in video-videoconferencing
communications, is mounted on the pan-tilt unit, and a Kinect
sensor is, in turn, mounted at the top of the tablet, as shown
in Figure 1. Since the tablet moves together with the Kinect
to face a speaker, it provides an embodiment of the head, and
emulates how one turns his/her head to face another person
during a conversation.

In our prototype, the microphone array comprises 8 Shure
omnidirectional microphones evenly distributed on a curved
surface. The top of the microphones can be seen in Figure 1
as silver small circles on the surface of the black base. The
audio signals are amplified and synchronized by a MOTU
896mk3 audio interface, before being fed to the computer

for audio tracking. We use Robotis Dynamixel MX-106
servomotors, which are computer-controlled via the usb-
plug-and-play USB2Dynamixel device, and provide more
than sufficient torque to move and hold the tablet in all
possible orientations. The audio tracking, visual tracking and
motion control modules all run on a PC with Intel Core i7
64-bit dual-core CPU and Microsoft Windows 7 operating
system.

Fig. 2. Schematic overview of audiovisual attention control module

B. Attention Control Software

The attention control architecture is shown in Figure 2.
The system consists of the input layer, two hidden layers and
the output layer. A Kinect and a microphone array are used in
the input layer. The first hidden layer is composed of visual
and audio modules. The visual module consists of a head
tracking sub-system and a gesture recognition sub-system. In
the audio module, a speech source localization sub-system
detects and localizes human voice. In the second hidden
layer, an audiovisual fusion module is used to integrate
multiple attention cues from the first hidden layer to obtain
an attention target. Then, the motion control module ensures
that this attention target is tracked smoothly by the robot.

The head tracking module tracks the head position of
the nearest skeleton detected in the Kinect’s field of view
using Microsoft Kinect for Windows SDK. Speech source
localization is based on the algorithm in [15] , which uses
a Voice Activity Detector to discriminate human voice from
irrelevant sounds, followed by a combination of Time Delay
of Arrival and Steered Beamformer techniques to determine
the direction of the speech source. Gesture recognition and
full audiovisual fusion with speech source localization and
head tracking will be covered in the subsequent sections. To
move the robot a smooth and human-like fashion, we use a
minimum-jerk trajectory for each joint angle. Proportional-
derivative control is used to drives the motors to track this
minimum-jerk trajectory.

III. GESTURE-BASED ATTENTION DIRECTION

Gesture-based attention direction is realized by combining
gesture recognition with Short-Term Memory (STM). The
rationale for using STM is that building memory helps
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the robot to reduce search space and confirm the precise
locations of the attention targets.

We use the Localist Attractor Network (LAN) [16] for
gesture recognition because it requires only a small amount
of training data but can obtain high accuracy [5]. In the
LAN model, a recognition target is reached when the state
converges to an attractor. Let wj be the attractor for the jth
gesture class, πj the connection weight, σj the width of the
attractor basin, ε the initial state, and y(t) the current state.
The LAN model is described by [16]:

y(t+ 1) = α(t)ε+ (1− α(t))
∑

j

qj(t)wj (1)

qj(t) =
πje

−|y−wj|
2/2σ2

j

∑

l πle−|y−wl|2/2σ2

l

(2)

α(t) = σ2

y(t)/(σ
2

y(t) + σ2

z) (3)

σ2

y(t) =
1

n

∑

j

qj(t)|y(t)− wj |
2 (4)

where n is the state dimension and σz is a non-negative
constant that accounts for the unreliability of observation
(σz = 0 means wholly unreliable observation).

Let the low pass filtered skeleton data of Kinect be:

X = {X ′
t,le, X

′
t,lw, X

′
t,re, X

′
t,rw}

N
t=1

where X ′
t,le, X ′

t,lw, X ′
t,re and X ′

t,rw are, respectively, the
position vectors at time t for the left elbow, left wrist, right
elbow and right wrist, taken from the ipsilateral shoulder. By
using Fast Fourier Transform (FFT), the coefficients of the
m lowest frequencies of X are obtained as the feature vector
F =

[

f1 f2 · · · f2m
]

, which consists of 2m features
for each gesture candidate. Combining k example gestures
for the jth class and ith person, we have

Fi,j =







f i,j
1,1 f i,j

2,1 · · · f i,j
2m,1

...
f i,j
1,k f i,j

2,k · · · f i,j
2m,k







Finally, we obtain the feature matrix of gesture class j for
n different persons as F j

h = [FT
1,j , ..., F

T
n,j ]

T .
We use a self-organizing map to obtain a low dimensional

space where it is easier to find the center of F j
h . After the

mapping, F j
2

is denoted as the corresponding position of F j
h

in the 2D space. Thus, F j
2

is taken as the attractor basin
for the jth class, and the center of F j

2
is chosen as the jth

attractor, denoted by wj .
Now, we propose Algorithm 1 to direct the robot’s atten-

tion based on recognized gestures and STM, which contains
the memorized locations of the users as they were last
observed by the robot. For a new gesture candidate with
feature vector F , we initialize ε = F . Then, we iterate y
using (1) until y converges to some wj , which yields the
recognized gesture class. After that, the gesture recognition
result is associated with STM to find the attention target Pa.
Specifically, it is the position in STM that is closest to the
pointing direction.

Algorithm 1: Gesture-Based Attention Direction.
Data: {P1, · · · , Pn} as positions in STM,

{w1, ..., wm} as attractors to m gesture classes, and
F as features for new detected gesture.

Parameters: πj , σj and σz in LAN model.
Result: Attention target Pa.
begin

1. Initialize ε = F .
2. Iterate y using (1) until y converges to an attractor wj .
3. Calculate distance ek = ‖y − wk‖, for k = 1, ..., m,

and find the directions D1 and D2 corresponding to
the least and second least ek values respectively.

4. Determine the attention target as follows:
If there is a position Pj in STM corresponding
to the speaker’s direction D1, then Pa = Pj .
Else find the position Pj between
the two directions D1 and D2 and set Pa = Pj .

end

IV. FULL AUDIO-VISUAL FUSION

Audio-visual fusion resolves conflict among multiple at-
tention cues from head tracking, speech source localization
and gesture recognition, and uses short term memory to
associate user-specific audiovisual features with the last
tracking location, so that more accurate localization of out-
of-view attention targets identified from audio or gesture cues
can be obtained. We require the robot to turn around and
memorize the accurate positions of all persons in the meeting
room by combining the results of head tracking and sound
localization. These positions will be put into STM. The head
tracking module confirms precise location and updates the
memory when any user changes position.

Define the following conditions in the architecture:
Condition 1: The speech source has the same azimuth angle
region as that of the person detected in the robot’s view.
Condition 2: Human gesture is detected by the robot.

We detail the steps for fusing audio-visual cues to deter-
mine the attention target Pa and update the STM:

1) Check for attention cues from gesture recognition, head
tracking and speech source localization modules. If the
received cue comes from a single module only, then
the attention target is trivially obtained. If multiple cues
are received, check Condition 1.

2) If Condition 1 is satisfied, either head tracking or
gesture recognition takes priority over the auditory
cue. If Condition 2 is true, then the attention target
is determined from gesture as outlined in Algorithm 1.
Otherwise, the attention target is the head of the person
in the robot’s view.

3) If Condition 1 is not satisfied, speech source localiza-
tion takes priority over visual cues to determine the
attention target. Algorithm 2 describes speech-based
attention direction and STM updating.

4) The STM is updated with the current focus.

For the updating of STM in Algorithm 2, a simple way is
to directly store the attention target Pa into STM. But a
more accurate position can be achieved with the help of head
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tracking. Thus we update STM by adding this new position
and not the attention target Pa.

Algorithm 2: Speech-Based Attention Direction and STM.
Data: {P1, P2, · · · , Pn} as positions in STM,

Ps as target from speech source localization.
Parameter: Bound of O(Ω) ∈ R2, where O(Ω) is a

neighborhood region of O = (0, 0).
Result: Attention target Pa and updated STM.
begin

1. Compute the distance ei = ‖Pi − Ps‖ for i = 1, · · · , n
2. Find minimum ei and memorize index j.
3. Find position Pj corresponding to index j

and determine attention target:
If (Pj − Ps) ∈ O(Ω)
then Pa = Pj and STM remains unchanged;
Else Pa = Ps and update STM.

end

V. EXPERIMENT RESULTS

The experiment consists of two parts: the first part tests
the accuracy of gesture-based attention direction, while the
second part investigates the performance of the full audio-
visual attention-directed robot in a scenario involving real-
time interactions with users.

First, to train the LAN model, 5 users demonstrated 20
deictic gestures in each of 5 directions, namely the Front,
Right, Right45, Left and Left45. The following parameters
are chosen in the LAN model: πj = 1, σj = 0.03 and
σz = 0.1. For online testing, 3 persons participated, two of
whom come from the training set (Users 1 and 2) and one
is a new user (User 3). Each person performed 40 instances
of each gesture class. The LAN model is able to classify
94.45%, 94% and 88% of the gestures correctly for Users
1, 2 and 3 respectively, even though User 3 is not in the
training set.

P1

P2

P3

P4

P5

--- Robot

--- Speaker

--- Positions in STM

--- Memorized gesture

    directions

Fig. 3. Meeting room layout for gesture-based attention direction test.

A. Gesture-Based Attention Direction

The objective of this experiment is to test the ability of
Algorithm 1 in determining the correct attention target from
deictic gestures. We have 5 STM positions, P1 to P5, whose
directions are 60 and 30 degrees to the right, front, and
30 and 60 degrees to the left, respectively, as depicted in
Fig. 3. Assume that the current speaker is always facing
the robot camera. According to Algorithm 1, the two most
similar gesture classes in the LAN model are found, and
the attention target determined by interpolating between the

TABLE I

GESTURE-BASED ATTENTION DIRECTION

Attention Target
P1 P2 P3 P4 P5

Gesture 100 22 18 20 26 14

Right30 20 19 1 - - -
Right60 20 3 17 - - -
Front 20 - - 20 - -
Left30 20 - - - 20 0

Left60 20 - - - 6 14

TABLE II

SEQUENCE OF SCENARIO EVENTS

Phase Description Trigger Target Cues
start Y is seated facing - Y Vision

the robot camera.
Nobody is talking.

A X gives an introduction X talks. X Speech
and gestures towards Vision
Y to invite Y to the Gesture
white board to present
something.

B Y stands up and walks X gestures Y Vision
to the white board. towards Y.

C Y talks and points Y talks. Y Speech
to material on the Vision
white board.

D Z interrupts with a Z talks. Z Speech
question when Y pauses, Vision
and gestures towards Y Gesture
to give the floor to Y.

E Y ponders the question Z gestures Y Vision
and prepares to reply. towards Y.

F Y answers the question. Y talks. Y Speech
Vision

end X concludes the X talks. X Speech
session. Vision

two directions. For example, if the speaker gestures towards
P1, then the two nearest memorized gesture directions, Right
and Right45, are determined after the LAN model converges.
Thus the attention target is found in the region between these
two directions. Table I shows the recognition rates based
on 20 gestures towards each STM position. Overall, about
90% of the attention targets can be inferred correctly, even if
the gestures point to directions not memorized in the LAN
model. This illustrates the robustness of the gesture-based
attention direction algorithm.

B. Full Audio-Visual Attention Direction

To test the integration of all modules together, we designed
a scenario1that is representative of typical meeting situations,
and that includes behaviors like taking turns to talk, walking
to a white board and presenting with material on the white
board, as well as using gestures to reference another person.

The main aim of this study is to capture the view seen
by the other end of the video-conferencing under various
conditions, namely:

1Supplementary video available at:
http://www1.i2r.a-star.edu.sg/˜kptee/Video/
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Fig. 4. Experiment scenario.

Fig. 5. Snapshots from tablet camera at different phases A-F and different
conditions C1-C4. A cross denotes wrong target fixation.

C1) Speech source localization only.
C2) Speech source localization and head tracking.
C3) Speech source localization, head tracking, and gesture

recognition.
C4) Manual control by a user (i.e. “ground truth”).

We use the tablet camera to capture video footage for
analysis. Since the video-conferencing software is launched
from the tablet, the video recorded by the tablet camera is
exactly what the users at the far end would see. We use
OpenCV face detection together with manual annotation to
estimate the target subject’s head position in the videos.

Three subjects, “X”, “Y”,and “Z”, participated in the
experiment. Figure 4 shows the room layout and the positions
of the subjects and robot. A round of self-introduction is
initiated in order to memorize the positions of the subjects

in the STM based on Algorithm 2. After that, the scenario
commences based on the sequence detailed in Table II.

The importance of C4 is that it is a “ground truth” for
which we can compare the robot’s performance in C1-C3. C4
involves manual control where a fourth user, standing behind
the robot, uses both hands to freely orientate the tablet about
its pan and tilt axes.

Figure 5 provides a qualitative comparison between C1-
C4 in terms of the actual view seen from the tablet camera.
C3 gives views that are most consistent with C4 across all
phases A-F. The main difference between the views of C3
and C4 is that C3 positions the person’s head nearer to the
top of the image. Unlike C3, C1 and C2 do not capture the
views of the correct attention target Y in phases B and E.

For quantitative comparison, we define an error measure:

d =

{

‖p− p∗‖, if correct target
p̄, otherwise

(5)

where p and p∗ are the actual and desired locations of the
attention target’s head in the image, respectively, and p̄ a
penalty when the attention target according to Table II is not
in the image. We select p∗ = (240, 213) pixels, counting
from the top left corner of 480 × 640 resolution images.
This desired head position provides ease of capturing body
language. Also, we set p̄ = 240 pixels, which is the minimum
estimate of the location of the out-of-view attention target.

Figure 6 shows a comparison of the error measure d for
Conditions C1-C4. We observe that:

1) In phase A, the error magnitudes and profiles of C1-
C3 are generally similar to that of reference C4. The
initial discontinuity is due to fast robot movement to
a new off-display target.

2) In phase B, C3 yields low errors since the robot turned
to the correct target Y after recognizing the gesture
from X. In contrast, the errors for C1 and C2 are high
because the correct target Y is not in the image for
some time. The fluctuation of error for C3 and C4
after finding Y is due to Y standing and walking to
the white board. For C2, the error decreases when Y
walks into the robot’s view. The error for C1 exhibits
a V shape because Y walks across the robot’s view
without being tracked.

3) Phase C has similar errors for all the conditions since
only Y is standing at the same position while talking.

4) In phase D, the errors for all conditions are similar,
but C1 is slightly higher since it is unable to track the
fine motion of Z.

5) In phase E, the error for C3 is close to that for C4 due
to gesture-based attention direction, but those for C1
and C2 peak throughout the entire phase.

6) In phase F, the error for C3 is again similar to that for
C4. For C1 and C2, the error decreases from a large
value as the robot turns attention from Z to Y upon
the speech cue.

Taking the integral of the error over the entire duration
of the scenario, we see, in Table III, that C4 has the least
value, and C3 is the closest to C4. Without gesture detection,
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Fig. 6. Error measure for Conditions C1-C4, represented by green (C1), black (C2), blue (C3) and red (C4) markers. C3 has similar error to C4, but C1
and C2 have large errors during phases B and E where attention targets are specified by gestures.

TABLE III

COMPARISON OF ERROR INTEGRAL

Trial C4 C3 C2 C1
Error Integral [pixel s] 2010.8 2722.7 3026.7 3094.5

C1 and C2 incurred higher error than C3 and C4 in phases
B and E. In summary, it is necessary for the telepresence
robot to have all 3 features – speech source localization,
head tracking and gesture recognition – in order to perform
on par with a human on directing attention to the correct
person in a meeting scenario.

VI. CONCLUSION

We have developed a telepresence robot that automati-
cally directs attention with speech source localization, head
tracking, as well as gesture recognition. Audio-visual fusion
resolves potential conflict among multiple attention cues.
Compared with existing approaches which use the separate
visual or auditory module or even simply integrate the
two modules together, our proposed system provides the
following advantages: (i) gesture recognition sub-system has
been included into the whole system to improve the attention
detection from speakers; (ii) a short-term memory has been
integrated in the audio-visual fusion to enhance robustness
and accuracy of attention direction. The outcome is a more
natural user interface with automatic control of attention
focus based on natural conversation cues. Our experiment
results show that the gesture-based attention direction algo-
rithm can achieve more than 88% accuracy. Additionally, the
full-feature audio-visual attention-directed robot performs on
par with a human in directing attention to the correct person
in a meeting scenario. Excluding gesture recognition, or
both gesture and head tracking, results in the robot fixating
on the wrong person. Future work will include large-group
user study under real unstructured group videoconferencing
scenarios. It is important to investigate user experience from
both sides of the telepresence session, as well as robustness
against noise in the environment.
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