
Robotics 2015, 4, 365-397; doi:10.3390/robotics4030365
OPEN ACCESS

robotics
ISSN 2218-6581

www.mdpi.com/journal/robotics

Article

Multi-Robot Item Delivery and Foraging: Two Sides of a Coin
Somchaya Liemhetcharat *, Rui Yan, Keng Peng Tee and Matthew Lee

Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR),
Singapore 138632, Singapore; E-Mails: ryan@i2r.a-star.edu.sg (R.Y.); kptee@i2r.a-star.edu.sg (K.P.T.);
mattlkf@outlook.com (M.L.)

* Author to whom correspondence should be addressed; E-Mail: liemhet-s@i2r.a-star.edu.sg;
Tel.: +65-6408-2000.

Academic Editor: Prithviraj (Raj) Dasgupta

Received: 30 June 2015 / Accepted: 15 September 2015 / Published: 23 September 2015

Abstract: Multi-robot foraging has been widely studied in the literature, and the general
assumption is that the robots are simple, i.e., with limited processing and carrying capacity.
We previously studied continuous foraging with slightly more capable robots, and in this
article, we are interested in using similar robots for item delivery. Interestingly, item delivery
and foraging are two sides of the same coin: foraging an item from a location is similar to
satisfying a demand. We formally define the multi-robot item delivery problem and show
that the continuous foraging problem is a special case of it. We contribute distributed
multi-robot algorithms that solve the item delivery and foraging problems and describe
how our shared world model is synchronized across the multi-robot team. We performed
extensive experiments on simulated robots using a Java simulator, and we present our results
to demonstrate that we outperform benchmark algorithms from multi-robot foraging.

Keywords: multi-robot; robot team; distributed; item delivery; foraging; world model

1. Introduction

Multi-robot teams have been considered in a variety of domains, such as searching, patrolling
and foraging. We are interested in item delivery, where the goal of the multi-robot team is to deliver
items from a central location to demands in an environment. A motivating scenario for our problem is a
cocktail party: the multi-robot team would deliver refreshments (e.g., drinks and snacks) to guests at the

Robotics 2015, 4 366

party. Since the guests are free to roam about the environment, demands for the refreshments can occur
at any time and at any location.

Interestingly, item delivery and foraging are two sides of the same coin: foraging an item from a
location can be viewed as removing a demand from a location; we have previously considered continuous
foraging [1], and in this article, we explain how continuous foraging is in fact a special case of the general
item delivery problem.

In this article, we formally define the multi-robot item delivery problem, where the goal is to
maximize the number of satisfied demands after a fixed amount of time. The demands are generated
probabilistically in the environment, similar to how resources replenish in the foraging domain.
We present the Bernoulli, Poisson and stochastic logistic replenishment models. The first two models,
Bernoulli and Poisson, assume that demands replenish independently of the number of existing demands,
which correspond to some phenomenon, such as mail to be delivered in a neighborhood. The third model,
the stochastic logistic model, adjusts the rate of replenishment based on the number of existing demands
at a location. The stochastic logistic model is best-suited for populations of living things, such as fish in
the sea, and is introduced for completeness in the foraging problem.

Existing approaches to multi-robot foraging, which we explain later in the Related Work Section,
generally consider homogeneous low-computation robots that can only carry one item. We are interested
in slightly more capable robots that are able to carry multiple items, as well as maintain a shared world
model of the environment. Furthermore, approaches to solve the item delivery problem, such as using
mixed-integer programming, are typically difficult to scale to large problems. In contrast, we present
completely distributed algorithms that can run on robots in real time.

We contribute five distributed multi-robot foraging algorithms and discuss how these algorithms are
adapted to solve the more general multi-robot item delivery problem. Further, we present a modification
of one of our algorithms to best suit the item delivery problem. These algorithms assume the existence
of a shared world model among the robots, and we present details on how the robots maintain the shared
world model and coordinate in a distributed manner without negotiation.

We evaluate our algorithms in simulation, over a variety of parameters, and benchmark our algorithms
against existing algorithms in sustainable foraging [2] and continuous area sweeping [3]. We demonstrate
that our algorithms outperform the benchmarks over the range of parameters, thus illustrating the efficacy
of our algorithms in both the continuous foraging, as well as the item delivery domains.

The layout of our article is as follows: Section 2 presents related work in multi-robot foraging and
item delivery. Section 3 formally defines the multi-robot item delivery problem and how foraging is
a special case of the problem, and Section 4 presents the demand generation models. Sections 5 and 6
present the distributed algorithms and the shared world model, respectively. We describe our experiments
and analyze the results in Section 7 and conclude in Section 8.

2. Related Work

Multi-robot task allocation (MRTA) is a broad class of problems that involve a team of robots working
together to solve a common goal, and [4] gives a good survey of MRTA problems. Foraging has been
considered as an MRTA problem; in particular, it is typically considered a single-task, single-robot,

Robotics 2015, 4 367

instantaneous assignment (ST-SR-IA) or single-task, single-robot, time-extended (ST-SR-TA) problem,
where each sub-task of foraging an item can be performed by a single robot and each robot can perform
one sub-task at a time. The instantaneous assignment variant of the multi-robot foraging problem implies
that all of the items to be foraged are known upfront, while the time-extended variable implies that items
to be foraged appear over time. Synergy graphs were recently introduced to form effective multi-robot
teams in ad hoc scenarios, i.e., when the robots have not collaborated in the past [5,6]. Synergy graphs
have been applied to many multi-robot problems, including foraging, such as role assignment [7],
and configuring robust modules for multi-robot teams [8,9]. While synergy graphs are useful for ad
hoc teams, we are interested in multi-robot teams that are completely controlled by a single user in this
article, i.e., the robots’ algorithms are fully under the user’s control.

Typically, approaches to multi-robot foraging and multi-robot coordination consider decentralized
algorithms, so that the algorithms are scalable across large multi-robot teams, e.g., [10–12]. In addition,
foraging robots are typically assumed to have low computation and carrying capacity, which are inspired
by ants and other insect societies. Hence, bio-inspired approaches, such as ant colony and particle
swarm algorithms (e.g., [13,14]), are commonly applied to multi-robot foraging problems. Ant-based
algorithms typically use artificial pheromones to guide the other robots’ motions and paths (e.g., [15–17])
or simulated pheromones using communication (e.g., [18]). Other non-pheromone approaches, such as
bee-inspired algorithms, have also been considered, e.g., [19,20]. We are interested in multi-robot
problems where each robot is more capable computationally and can carry multiple items. In addition,
we are interested in assigning which tasks each robot should perform and not in the optimization of the
path the robot will take to complete the task.

Other approaches to multi-robot coordination aim to reduce the effect of physical interference
between robots, which can reduce the efficiency of large teams [21,22]. Spatial partitioning schemes that
reduce opportunities for interference [23–25] and adaptive methods that select appropriate conflict-resolving
behaviors [26–28] have been applied to multi-robot foraging and area cleaning problems.

Another common approach to solving multi-robot problems is using a market-based approach [29–31],
where tasks are auctioned off to the robots, who form bids based on their current state and how well
they can perform the task. In the absence of a centralized auctioneer, market-based approaches can be
conducted in a decentralized manner [32]. Market-based approaches have been applied to multi-robot
foraging and delivery problems [33–36].

Sustainable foraging is a recent advancement, where the focus is on foraging locations effectively
and preventing the locations from collapsing due to over-foraging [2]. Task partitioning is a related
multi-robot problem, where the task is decomposed into sub-tasks that each robot can perform.
Autonomous task partitioning has been applied to robot foraging [37], and task partitioning in ad hoc
scenarios has also been considered [38]. Other techniques for solving multi-robot foraging include an
adaptive response threshold model [39]. We compared against [2] in this article; the goal is to compare
their overall foraging rate with a multi-robot team, and we do not directly consider over-foraging in
this work.

In this article, we consider item delivery as a more general version of foraging. Robotic item delivery
has been considered on real robots, such as CMU’s CoBot [40–42]. Multi-robot item delivery has
similarities to the vehicle routing problem (VRP) and the dial-a-ride problem (DARP) [43], and the

Robotics 2015, 4 368

CoBot research has also considered item delivery with transfers [40]. However, typical solutions to
VRP and DARP consider mixed-integer programs, which are difficult to scale due to the computational
complexity of solving such problems. We are interested in distributed algorithms that find satisficing,
albeit non-optimal solutions and that run in real time.

A related research area to multi-robot item delivery and foraging is in patrolling. Continuous area
sweeping [3,44] has been considered, where a multi-robot team partitions a space and each robot
independently patrols an area. We compared against [3] in our work, although we adapt their algorithm
to have the robots work together in a common area, since that is more closely related to our approach.
In addition, research in multi-robot patrol typically considers patrolling strategies against an adversary
(e.g., [45,46]), but we do not consider adversaries in our work, since we mainly focus on item delivery
and foraging.

3. Problem Definition and Approach

In this section, we formally define the multi-robot item delivery problem and discuss how the problem
is a general version of the multi-robot foraging problem. Next, we give an overview of how we solve the
multi-robot item delivery problem. We first begin this section with a motivating scenario to aid in the
explanation of the formal problem definition.

3.1. Motivating Scenario

Suppose that there is a large event, e.g., a conference, and there is a period for the human guests to
mingle and socially interact, e.g., a cocktail party. The guests will be spread out among the party area
and will occasionally want to receive refreshments (drinks and/or food). To serve these refreshments,
a multi-robot team is deployed to move around the environment carrying the refreshments.

Each robot has a fixed capacity and can carry a certain number of items at any time. When the robot
has finished serving its refreshments (i.e., it is no longer carrying any items), it returns to a “home”
location (e.g., the kitchen) to replenish its items.

Further, there are different types of items (e.g., juice, cheese and cake). Guests may request any type
of item at any point in time, and the goal is to maximize the number of guest “demands” served.

3.2. Multi-Robot Item Delivery Problem Definition

Let L be the set of all locations (e.g., the cocktail party area) and D : L × L → R+ be the distance
function of the locations.

Let I = {I1, . . . , Ik} be the types of items. In our motivating scenario, I1, I2, I3 would represent
juice, cheese and cake, respectively.

LetR = {r1, . . . , rn} be the set of serving robots. Each robot ri has a maximum traveling speed si, an
observational range oi, a capacity ci and payload yi. ci and yi respectively indicate the maximum number
of items ri can carry and the number of items ri is currently carrying. We assume that every item takes
up one “slot” in the robot’s capacity, regardless of its type. We denote t(ri, lα, lβ) =

⌈
D(lα,lβ)

si

⌉
to be the

number of time steps ri takes to travel from location lα to lβ.

Robotics 2015, 4 369

Let d = (t, l, I) be a demand, where t is the time the demand is created, l ∈ L is the location of the
demand and I ∈ I is the type of item requested. Let D be the set of all demands and Dt ⊆ D be the
demands up till time t. Further, we denote D(s) ⊆ D to be the demands that have been satisfied and
D(u) to be the unsatisfied demands, where D(s) ∪ D(u) = D. Similarly, we denote D(s)

t and D(u)
t as the

satisfied and unsatisfied demands up till time t.
In our motivating scenario, a guest requesting juice would be represented as dg = (tg, lg, I1), where

tg is the current time, lg is the guest’s location and I1 represents juice. If the guest requests more than
one item, e.g., multiple glasses of juice, or juice and cake, then multiple demands with identical times
and locations are created.

While the demands are created by the guests, the robots may not be fully aware of them (e.g., if a
guest requests a juice, but no robot is nearby to observe the request). As such, we define the robot’s
model of the demands.

Let D̂t,i be robot ri’s model of the current demands up till time t. The robot ri’s model is updated
with a true demand whenever the robot travels within oi of a demand d′ = (t′, l′, I ′), i.e., D(l′, li) ≤ oi,
where li is the current location of ri. The robots can communicate to synchronize their models of the
demands, within a communication range C, i.e., two robots can communicate if and only if they are
within distance C of each other.

For notational convenience, we denote D(u),lj
t to be the unsatisfied demands at location lj at time t,

i.e., D(u),lj
t =

{
d′ ∈ D(u)

t s.t. d′ = (t′, lj, I
′)
}

. Similarly, we denote D̂(u),lj
t,i to be robot ri’s model of D(u),lj

t .

The goal is to maximize the number of satisfied demands D(s), at the end of the event (time T).

3.3. Comparison to Multi-Robot Foraging Problem

We recently considered continuous foraging and information gathering in a multi-agent team [1],
where the goal was to maximize the rate of items foraged by the multi-robot team.

The multi-robot item delivery problem (IDP) defined in the previous subsection is a general case of
the multi-robot foraging problem (FP), as we describe next.

In the FP, resources are periodically generated at a set of locations (e.g., fruits growing in orchards),
and the multi-robot team has to travel to these locations to forage the resources and return them to a
“home” location. At first glance, foraging and item delivery appear to be opposites: foraging collects
resources from a location, while item delivery brings items to a location. However, IDP and FP are
actually two sides of the same coin: delivering items to a location can be viewed as “foraging” demands
from a location. With that in mind, we now discuss how the definitions in the previous subsection on the
IDP apply to the FP.

Items are generated/replenished at a fixed set of locations in the FP, compared to anywhere in a fixed
space for the IDP. However, the definition of L applies to both problems, except that L may be smaller
in size for the FP, compared to spanning the entire space for IDP.

In the FP, there is only one type of item/resource to be foraged, so I = {I1}.
The definition of demandsD is identical, except thatD now represents items to be foraged. Similarly,

the definition of the robot’s model D̂t,i is applicable, and the robot can update its model when it is

Robotics 2015, 4 370

near a foraging location. The key difference is that the robot may also update its model using some
replenishment model of the locations, which we describe in the next section.

The goal of the FP is to maximize the rate of resources foraged, since the resources are assumed to be
continuously replenished over time, i.e., D

(s)

T
, which is a scaled version of the goal of the IDP.

Table 1 below summarizes how the multi-robot foraging problem is a special case of the multi-robot
item delivery problem.

Table 1. Comparison of the multi-robot item delivery and foraging problems. Symbols that
are not shown are identical across both problems (e.g.,R is the set of robots).

Symbol Item Delivery Problem Foraging Problem

L Set of locations, spanning the entire space Discrete set of locations
I Types of items to be delivered A single type of resource
D Set of demands Set of resources
D̂t,i Robot ri’s model of demands Robot ri’s model of resources

3.4. Overview of Approach

In order to solve the multi-robot item delivery problem, we will first detail our solution for the
multi-robot foraging problem [1] and discuss how the foraging solution is extended to the item
delivery problem.

Our approach for solving the multi-robot foraging problem (FP) and item delivery problem (ITP) is:

• For the FP, resources at the locations replenish following a known model. We detail the different
models (Bernoulli, Poisson and stochastic logistic) in Section 4. For the ITP, we focus solely on
the Poisson replenishment model;
• The robots’ model of demands, D̂t,i, is updated using the replenishment models, as well as

observations made as the robots travel in the environment;
• In the FP, the robots do not share their models D̂t,i, and only share their current destinations. In the

ITP, the robots share their models, and we discuss the shared world model in Section 6;
• We contribute the distributed algorithms for the FP and discuss how the algorithms are also

applicable to the ITP (Section 5.1).

4. Demand Generation Models

In this section, we discuss how the robots’ model the demands that are being created over time.
We first consider resource replenishment models in the multi-robot foraging problem and discuss how
resource replenishment models are applied to the multi-robot item delivery problem.

4.1. Resource Replenishment for Multi-Robot Foraging

We first consider the multi-robot foraging problem, where there is a discrete set of locations L,
and resources are replenished only at these locations. Each location is independent, i.e., resources at
a location l1 ∈ L do not affect resources at another location l2 ∈ L (l1 6= l2).

Robotics 2015, 4 371

The dynamics of resource replenishment is an important factor that affects the foraging rate. To study
the effect of resource replenishment, we consider three resource models, namely the Bernoulli model,
the Poisson model and the stochastic logistic model. For the Bernoulli model, the probability of resources
being generated at each time is uniform and independent. For the Poisson model, the number of resources
generated at each time follows a Poisson distribution. For the stochastic logistic model, the resource
growth rate varies with the number of existing resources.

4.1.1. Bernoulli Replenishment

The first resource replenishment model we contribute is the Bernoulli model. In the Bernoulli model,
resources at every location probabilistically replenish every time step.

Specifically, for every location lj ∈ L, we associate a probability pj ∈ [0, 1], such that at time step t,
a demand:

d = (t, lj, I1) with probability pj (1)

is created. Note that in the multi-robot foraging problem, only one type of item/resource is available
(I = {I1}), so all demands will be of type I1.

The Bernoulli replenishment model was chosen for a number of reasons:

• The Bernoulli distribution is intuitive and easily understood;
• Resource replenishment is independent of the number of resources already present at the location;
• Even if pj is known, the number of resources/demands created is probabilistic.

The Bernoulli replenishment model provides a baseline for our analysis, due to the reasons listed
above. Further, the Bernoulli distribution is also applicable to the multi-robot item delivery problem,
as each person in a cocktail party can be modeled with a probability pj indicating whether the person
will request a drink.

However, there are some drawbacks to the Bernoulli model:

• There is no upper limit to the number of demands generated at a location;
• At most one resource is replenished per time step.

In the Bernoulli model, items are replenished probabilistically every time step with probability pj .
Since item replenishment is independent of the number of existing resources at the location, there is no
upper limit to the number of resources at a location. In fact, if no foraging occurs, then as t → ∞,
the number of resources also approaches infinity. In particular, if a robot ri does not visit a location lj for
a long period of time (and assuming no other robots visit that location either), then with high probability,
ri will be able to completely fill its capacity ci when it visits lj . We will address this drawback in the
stochastic logistic model that we present later.

Further, every time step, at most one resource is replenished. As such, a foraging robot can make
certain assumptions in its algorithms: suppose that a robot ri is currently at a location lj and has foraged
all of the resources at that location, i.e., there are demands d = (t, l, I), such that l = lj . If the robot
takes k time steps to return home and equivalently takes k time steps to travel from home to lj , then a

Robotics 2015, 4 372

round-trip from lj to the home location and back to lj will yield a maximum of 2k resources at lj . As
such, if robot ri’s capacity ci > 2k, then the robot will definitely be able to satisfy all of the demands at
lj after the round trip. We address the drawback of replenishing at most one resource per time step, with
the Poisson replenishment model that we present next.

4.1.2. Poisson Replenishment

The Poisson replenishment model, as its name suggests, uses the Poisson distribution. In particular,
for every location lj ∈ L, we associate a mean value λj . The Poisson replenishment model is similar
to the Bernoulli replenishment model, except that more than one resource may be replenished every
time step.

Specifically, at every time step t, a list of demands:

Dj = ((t, lj, I1), (t, lj, I1), . . .) where |Dj| = bαjc, and αj ∼ Pois(λj) (2)

is created.
The Poisson replenishment model has a number of features, some of which are identical to the

Bernoulli model:

• The Poisson distribution corresponds to a number of real-life scenarios, e.g., the number of people
waiting at a bus stop;
• Resource replenishment is independent of the number of resources/demands already present at

the location;
• Even if λj is known, the number of demands created is probabilistic;
• More than one resource may be replenished every time step.

As such, the Poisson replenishment model serves as a slightly more complex model for analysis,
compared to the Bernoulli model. The key benefits of the Poisson model are that more than one resource
may be replenished every time step, and the Poisson distribution models some real-life scenarios well.

However, the Poisson replenishment model shares one key drawback with the Bernoulli model,
namely that there is no upper limit to the number of demands at a location. To address this, we contribute
the stochastic logistic replenishment model next.

4.1.3. Stochastic Logistic Replenishment

The standard logistic resource model, widely used in multi-robot systems (see e.g., [2,47]), can be
described by:

dD(u),lj
t

dt
= λD(u),lj

t

(
1− D

(u),lj
t

K

)
(3)

where λ is the unconstrained growth rate and K is the maximum carrying capacity of the environment.
In other words, D(u),lj

t follows the standard logistic growth model with self-limiting growth. Because
Equation (3) is deterministic, the entire resource evolution can be conveniently computed in advance,
assuming that the parameters λ and K in this model are known a priori. Choosing λ = 0.04, K = 100

Robotics 2015, 4 373

and the minimum population bound D(u),lj
0 = 1, the resource evolution based on this model is simulated

in Figure 1.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Time

D
(u
),
l j

t

Figure 1. Resource evolution of the logistic model in Equation (3).

However, in reality, there is often uncertainty in the resource model due to the fact that resource
replenishment is usually not an isolated process, but rather, is affected by external/environmental inputs,
too, which may be stochastic in nature. To take into account such environmental stochasticities, as well
as density-dependent resource replenishment, we adopt the stochastic logistic model [48]:

dD(u),lj
t

dt
= λD(u),lj

t

(
1− D

(u),lj
t

K

)
+ σeD

(u),lj
t ◦ dWe(t) (4)

where σe is the intensity of the growth rate fluctuation, dWe(t) is delta-autocorrelated white noise,
i.e., mean zero and randomly changing sign within any short time interval, and “◦” denotes the
“Stratonovich calculus”. The explanation of Stratonovich calculus will be given later.

The process with increments dWe(t) representing the noise in the above stochastic logistic model is
the Brownian motion. For any 0 < t1 < t2 < t3 and h > 0, We(t) has the following properties:

1. Independent increments: We(t3)−We(t2) is independent of We(t2)−We(t1);
2. Stationary increments: (We(t2 + h)−We(t1 + h)) ∼ (We(t2)−We(t1));
3. Gaussian increments: (We(t2)−We(t1)) ∼ N (0, t2 − t1).

This means that We(t+h)−We(t) is independent of the history of We(s), s < t. Although Brownian
motion has continuous paths, the above properties imply that it is nowhere differentiable, and hence,
dWe(t)

dt
does not exist.

In order to use the model Equation (4) to compute D(u),lj
t , the resource at time t, we need to express

the differential equation into a different form. First, we take integrals on both sides of Equation (4)
to obtain:

D(u),lj
t = D(u),lj

0 +

∫ t

0

(λD(u),lj
s

(
1− D

(u),lj
s

K
)

)
ds +

∫ t

0

σeD(u),lj
s ◦ dWe(s) (5)

Robotics 2015, 4 374

To deal with the last term of Equation (5), we first consider the following Riemann–Stieltjes integral:∫ t

0

σeD(u),lj
s dWe(s) = lim

n→∞

n∑
j=1

σeD
(u),lj
τj (We(tj+1)−We(tj)) (6)

If We(t) is a smooth function, the above limit converges to a unique value regardless of whether τj
is chosen in the interval [tj, tj+1]. However, since We(t) is not smooth in the above stochastic logistic
model, the limit will depend on the value of τj . Thus, different choices lead to different stochastic
calculi: τj = tj leads to “Ito calculus”, denoted by

∫ t

0
σeD

(u),lj
s · dWe(s), and τj =

tj+tj+1

2
leads to

“Stratonovich calculus”, denoted by
∫ t

0
σeD

(u),lj
s ◦ dWe(s). Thus, we have the following relationship

between “Stratonovich calculus” and “Ito calculus”:∫ t

0

σeD(u),lj
s ◦ dWe(s) =

∫ t

0

1

2
σ2
eD(u),lj

s ds +

∫ t

0

σeD(u),lj
s · dWe(s) (7)

Substituting Equation (7) into Equation (5), we obtain:

D(u),lj
t =D(u),lj

0 +

∫ t

0

(
λD(u),lj

s (1− D
(u),lj
s

K
) +

1

2
σ2
eD(u),lj

s

)
ds

+

∫ t

0

σeD(u),lj
s · dWe(s) (8)

where the “Ito calculus” integral term can be expressed as:∫ t

0

σeD(u),lj
s · dWe(s) = lim

n→∞

n∑
q=1

σevj,sq(We(sq+1)−We(sq)) (9)

From Equation (8), we employ Euler’s method to obtain D̄(u),lj
t , a discretized approximation of the

solution D(u),lj
t between t and t + ∆t, as follows:

D̄(u),lj
t+∆t =D̄(u),lj

t +

(
λD̄(u),lj

t (1− D̄
(u),lj
t

K
) +

1

2
σ2
eD̄

(u),lj
t

)
∆t

+ σeD̄
(u),lj
t (We(t + ∆t)−We(t)) (10)

Thus, from Equation (10), we are able to compute an estimate of the resource at the next time step.
Note that the distribution of We(t + ∆t) −We(t) can be simulated by generating a standard Gaussian
distribution N (0, 1) multiplied by

√
∆t.

As an example, let the parameters be selected as σe = 0.02, λ = 0.04, K = 100 and D(u),lj
0 = 1.

Using Monte Carlo simulation with N = 100 scenarios, we generated several iterations of the
approximated resource evolution D(u),lj

t , as shown in Figure 2. The red dotted curve shows the resource
evolution without noise.

From the figure, there exist obviously different resources at some time points for the different iteration
process. This implies that the resource becomes difficult to predict accurately with the stochastic
environmental noise.

Robotics 2015, 4 375

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Time

D
(u
),
l j

t

With Noise
Without Noise

Figure 2. Replenishment of resources at a location that follows the stochastic logistic
model [1].

4.2. Applying Resource Replenishment Models to Item Delivery

The three resource replenishment models we contribute above were designed for the multi-robot
foraging problem, but are also applicable to the multi-robot item delivery problem. Specifically, since the
models assume that demands are generated at locations independently, a uniform distribution of locations
can be created in the space (i.e., every fixed interval spanning L). After doing so, the replenishment
models can be used at each discrete location.

Among the three replenishment models, we believe that the Poisson model suits the multi-robot item
delivery problem best:

• Having no upper limit suits the multi-robot item delivery problem, since guests may typically
request an unlimited number of refreshments;
• The Poisson distribution is suitable for modeling how demands may be created over time.

However, the assumption that replenishment is independent of location may not be entirely valid: in
a cocktail party, people tend to congregate in groups, so a demand generated at a location lj has a high
correlation with a nearby location lk. In this article, we will not address such dependencies, and we leave
creating a better demand generation model to future work.

5. Distributed Algorithms for Item Delivery

In this section, we first present distributed algorithms that solve the multi-robot foraging problem.
Next, we discuss how these algorithms apply to the multi-robot item delivery problem.

5.1. Multi-Robot Foraging Algorithms

We now describe five distributed foraging algorithms, three (greedy rate, adaptive sleep and adaptive
sleep with target change) of which were previously introduced in [1]. The other algorithms are listed as
baselines and comparisons to the three from [1].

Robotics 2015, 4 376

5.1.1. Random

The baseline algorithm for an agent is to randomly select a location to visit. When the agent arrives
at its desired location, it randomly selects the next location to visit. In particular, the agent has a
pv probability of visiting another location if yi < ci and always heads home if its payload is full,
i.e., yi = ci:

Random(ri) =

rand(l1, . . . , lm) if yi = 0

rand(l1, . . . , lm) if yi < ci with probability pv

l0 otherwise

where l0 is the home location.
One key characteristic of the random algorithm in the multi-robot foraging problem with the Bernoulli

model of resources is that the probability of a robot ri completely filling up its capacity increases as the
number of locations |L| increases:

Theorem 1. If the resource replenishes following the Bernoulli model of replenishment (Section 4.1.1),
then as |L| → ∞, P(D(s),lj

t > ci − yi)→ 1.

Proof. Sketch: as |L| increases, the average time between visits of any location lj increases. SinceD(u),lj
t

(the number of unsatisfied demands at location lj) follows the Bernoulli replenishment model, there is
no upper limit of the number of resources available, and hence, P(D(u),lj

t > ci − yi) increases.

In our experiments, we investigate the relationship of the maximum capacity ci when all agents ai

employ the Random algorithm.

5.1.2. Best Static Loop

The second algorithm finds the best static loop for a robot ri, i.e., ri considers a cycle
Γi = (l0, li1 , . . . , liR , l0), such that:

liα 6= liβ∀1 ≤ α,β ≤ R,α 6= β (11)

VΓi
= max(ci,

∑
liα∈Γi

E(|D(u),liα
tΓi

|)),where (12)

tΓi
=

∑
liα ,liα+1∈Γi

t(ri, liα , liα+1) (13)

In particular, since we are interested in continuous foraging (and the resources replenish themselves
over time), the robot seeks to maximize the rate of foraging:

Γ∗i = argmaxΓi

VΓi

tΓi

(14)

Equation (12) considers E(|D(u),liα
tΓi

|)), the expected number of resources at a location after tΓi
time

steps, where tΓi
is the number of time steps to complete the loop. Since the number of resources at every

location is initialized to zero when t = 0 and, on expectation, the robot should completely forage all

Robotics 2015, 4 377

available resources at locations in its loop, E(|D(u),liα
tΓi

|)) provides an estimate of how many resources
will be replenished every loop ri makes.

Hence, the goal of the best static loop algorithm is to forage ci resources every loop, while minimizing
the total time of traveling the loop. The primary benefit of the best static loop algorithm is that the agent
does not need to replan at any time, and on expectation, it completely fills up its capacity. However,
the drawback is that since the robot does not replan, if a location has fewer resources than expected, the
agent will return to the home location l0 with some capacity remaining (assuming all other locations have
the expected number of resources). Another related drawback is that unvisited locations will accumulate
resources that are never foraged by the robot. Further, Γ∗i is computationally expensive to find, since all
possible loops have to be considered.

Due to the drawbacks listed above, we will not evaluate the performance of best static loop in our
experiments later.

5.1.3. Greedy Rate

The random algorithm above has the benefit that it probabilistically visits all locations, and given
enough time, a location that replenishes resources following the Bernoulli or Poisson models will have
more resources than the robot’s capacity. However, the random algorithm does not make use of the robot
ri’s model of resource D̂(u)

t,i to select which location to visit.
The best static loop algorithm has the benefit of maximizing the foraging rate, i.e., the rate of moving

resources from the locations to the home location, given a static loop. The algorithm has the drawback
of being computationally expensive, as well as being “stuck” on a pre-defined loop.

The greedy rate algorithm [1] that we contribute aims to capture the benefits of random and best static
loop, while minimizing the drawbacks. Algorithm 1 shows the pseudocode of the greedy rate algorithm.
The key idea of the greedy rate algorithm is that the robot only selects its next destination (similar
to random), but it selects the destination by greedily optimizing the expected foraging rate (similar to
best static loop). Upon reaching its destination, the greedy rate algorithm replans and selects the next
destination for the robot, which allows the robot to use updated information from its observations, as
well as information from the other robots in the team.

Lines 2–4 of Algorithm 1 are the base case: if ri is no longer able to forage any more resources,
i.e., its payload yi equals its capacity, then ri heads to the home location l0 to drop off all of its resources.

Lines 6–7 compute the current foraging rate of ri if ri heads home. It does so by dividing its current
payload yi by the time taken to travel from its current location lα to the home location l0. This foraging
rate serves as a baseline for ri to decide if visiting a new location lβ is worthwhile.

Line 10 iterates through the robots that are also heading to lβ and sums up their remaining capacity
as eβ. The purpose of doing so is to discount the expected number of resources at lβ by eβ, since those
resources will be foraged by other robots. Hence, Line 11 computes the number of resources that are
expected to be available to be foraged by ri when it visits lβ at time step t + t(ri, lα, lβ).

Line 12 computes the expected foraging rate of ri if it visits lβ and heads back to l0, and Lines 13–16
greedily select the best location lβ.

Robotics 2015, 4 378

Algorithm 1 Compute the Next Destination of Robot ri that is Currently at Location lα
GreedyRate(ri, lα)

1: // Return home if the robot cannot forage any more resources
2: if ci = yi then
3: return l0

4: end if
5: // Compute the rate if ri heads home
6: vbest ← yi

t(ri,lα,l0)

7: lbest ← l0

8: // Compute the rate if ri visits lβ then heads home
9: for all lβ ∈ L s.t. β > 0 do

10: eβ ←
∑

rj∈R heading to lβ
(cj − yj)

11: y′i ← max(ci, yi + max(0, |D̂(u),lβ
t+t(ri,lα,lβ),i| − eβ))

12: v′ ← y′i
t(ri,lα,lβ)+t(ri,lβ,l0)

13: if v′ > vbest then
14: vbest ← v′

15: lbest ← lβ

16: end if
17: end for
18: return lbest

Overall, the greedy rate algorithm seeks to improve a robot ri’s marginal foraging rate, by greedily
considering the next best location to visit. It computes the expected foraging rate by using the robot’s
estimate D̂(u)

t+t(ri,lα,lβ),i. Hence, the algorithm performs better if the robot’s model is more accurate,
e.g., by receiving more information from its teammates. The greedy rate algorithm coordinates with its
teammates through “ear-marking” (Line 10), where robots do not consider resources that will be foraged
by their teammates that are also en-route to the same location. We chose ear-marking for coordination,
because it requires limited communication bandwidth and computation (useful for low-cost foraging
robots that typically have limited processing power).

We investigate the performance of the greedy rate algorithm and how it performs compared to the
random algorithm, over a variety of robot team sizes and capacities, in our Experimental Section.
The greedy rate algorithm is an improvement over the continuous sweeping algorithm [3], which we
also compare against in the experiments. Next, we present our algorithms for multi-robot foraging when
resources replenish following the stochastic logistic model.

5.1.4. Adaptive Sleep

We first contributed the adaptive sleep algorithm in [1]. The adaptive sleep algorithm is inspired from
an algorithm in sustainable foraging [2], and we discuss the similarities and differences between the two
algorithms later.

Robotics 2015, 4 379

Algorithm 2 shows the pseudocode of our adaptive sleep algorithm. The overall idea of our adaptive
sleep algorithm is that it is designed for the stochastic logistic replenishment model, and each foraging
robot picks a unique foraging location by communicating its decisions initially. Once a robot ri has
selected its foraging location lα, ri sleeps (stays at the home location l0) until lα has Kα

2
resources

according to ri’s model, where Kα is the maximum number of resources at lα. In particular, ri takes into
account the travel time t(ri, l0, lα) to lα in its computation.

Algorithm 2 Compute if Robot ri that is Assigned to Location lα should Sleep Further
AdaptiveSleep(ri, lα)

1: if ri is not at l0 then
2: return false
3: end if
4: if D̂(u)

t+t(ri,l0,lα),i <
Kα

2
+ ci then

5: return true
6: else
7: return false
8: end if

The robot ri waits until lα has Kα

2
resources, because in the logistic distribution, the change in

resources is highest at Kα

2
. As such, by foraging at that amount, the location will replenish its resources

at the fastest rate. However, since the capacity of ri may be greater than one, ri sleeps until there are
Kα

2
+ ci resources, where ci is ri’s capacity. When a robot is sleeping, it can shut off its motors and

most processing, but continues actively listening and processing messages from its teammates, then it
will “wake up” earlier as a result of the messages.

The robots select their assigned location by two steps iteratively. In the first step, each robot ri
randomly selects a location lα. The robots then broadcast their choices to nearby teammates. If two
robots ri and rj select the same location, then the robot with the higher id, e.g., rj , repeats the first step
again. The assumption is that the number of locations |L| is greater or equal to the number of robots n.
If the |L| < n, then an additional step occurs prior to the location assignment, where n− |L| robots stay
permanently “asleep”.

A key difference between our adaptive sleep algorithm and the sustainable foraging algorithm [2] is
that robots running our adaptive sleep algorithm sleep at the home location until there are Kα

2
resources

in their model. As such, if additional information is received (from another robot on the team), informing
that there are more resources than expected (since the resources replenish stochastically), then the robot
will awaken early to forage it. Furthermore, if there are less resources than expected, the robot will sleep
for a longer time.

In contrast, the sustainable foraging algorithm uses a proportional controller to determine how long
to sleep. A robot adjusts its sleeping time based on the observations of the number of resources
when it forages the location. As such, the robot is unable to make use of any information gathered
by its teammates. Furthermore, the sustainable foraging algorithm does not handle stochasticity
in the replenishment, so the proportional gain may fluctuate and not converge effectively based on
the observations.

Robotics 2015, 4 380

A benefit of the sustainable foraging algorithm is that it prevents locations from being over-foraged
and causing a population collapse, where there are insufficient resources to replenish the population
(e.g., if there is only one fish left in a pond, the number of fish cannot replenish). We do not directly
model population collapses, but we ensure that the foraging robots always leave a minimum number of
resources at the location (e.g., if there are x resources, but a minimum of y resources are required to
prevent over-collapse, then the robot only forages x− y resources).

5.1.5. Adaptive Sleep with Target Change

The adaptive sleep with target change algorithm [1], as its name suggests, is an extension of the
adaptive sleep algorithm. In the adaptive sleep algorithm, each robot ri is assigned a unique location lα.
However, if |L| > n, i.e., there are more locations than robots, then some locations will never be foraged.

In particular, these locations will eventually reach their maximum population size and stay there.
To take advantage of these unassigned locations, the adaptive sleep with target change algorithm makes
use of the “sleep” time of the robots. In particular, if a robot ri anticipates that it will sleep at the home
location for k time steps (based on its model of its assigned location lα) and there is another location lβ

that is close enough, i.e., a round-trip time of less than k time steps, then ri will visit lβ, as well.
These extra visits are selected randomly over the possible locations within k time steps, and the key

idea is to forage extra resources (compared to the adaptive sleep algorithm). However, since the robots
do not coordinate over these “target change” visits, it is possible that two robots visit the same location
lβ (or visit at a small time interval), so it brings lβ’s resources below the ideal Kβ

2
.

We analyze the performance of the adaptive sleep and adaptive sleep with target change algorithms
later in the Experimental Section, but in general, we feel that as long as n � |L|, the probability that
two robots will visit the same location is small. In addition, if two robots visit the same location within
a short time frame, there is also a high probability that no robots visit that location for some time, so the
resources will replenish to a high amount before another robot visits it.

5.2. Adapting the Foraging Algorithms for Item Delivery

The algorithms that we contributed in the previous section were designed for the multi-robot foraging
problem. However, they are also applicable to the multi-robot item delivery problem.

In particular, the foraging algorithms assume that there is a discrete set of locations L where the
robots select their destinations. In the multi-robot item delivery problem, demands can be created
anywhere in the location space. As such, to apply the foraging algorithms to the item delivery problem,
“foraging locations” can be added in a grid-like fashion through the location space. For example, if the
location is a 100 m × 100 m space, then locations can be created every 10 m, so that there are 100
discrete locations.

After creating such pseudo foraging locations, the multi-robot foraging locations can be run with
minor modifications, i.e., when a robot arrives at a location, it may have to travel a small distance to
serve the actual demand. Furthermore, demands within a certain radius have to be consolidated into a
pseudo foraging location for the models to be updated.

Robotics 2015, 4 381

In addition, we modified the greedy rate algorithm slightly to form the greedy rate while ignoring
capacity (GRIC) algorithm, as shown in Algorithm 3.

Algorithm 3 Compute the Next Destination of Robot ri that is Currently at Location lα
GreedyRateIgnoreCapacity(ri, lα)

1: // Return home if the robot cannot deliver any more items
2: if ci = yi then
3: return l0

4: end if
5: // Compute the rate if ri heads home
6: vbest ← yi

t(ri,lα,l0)

7: lbest ← l0

8: // Compute the rate if ri visits lβ then heads home
9: for all lβ ∈ L s.t. β > 0 do

10: eβ ←
∑

rj∈R heading to lβ
(cj − yj)

11: y′i ← yi + max(0, |D̂(u),lβ
t+t(ri,lα,lβ),i| − eβ)

12: v′ ← y′i
t(ri,lα,lβ)+t(ri,lβ,l0)

13: if v′ > vbest then
14: vbest ← v′

15: lbest ← lβ

16: end if
17: end for
18: return lbest

The main difference between Algorithms 1 and 3 is in Line 11. The GRIC algorithm does not take the
maximum capacity of the robot into account when computing the potential rate. We made this change
so that the robots would visit locations further from the home location over time. Otherwise, the robots
would tend to only visit locations close to home, since they would be able to fully fill their capacity (or so
they assume from the model), while minimizing the distance traveled. By visiting the far-away locations
from time to time, the robot is able to increase its delivery rate, since these locations will have a higher
number of accumulated demands.

We will analyze the performance of the multi-robot foraging algorithms in such scenarios for item
delivery later in the Experimental Section.

6. Maintaining a Model of the World

In this section, we describe how the multi-robot team maintains a model of the world, i.e., the locations
and details of demands for item delivery, as well as the locations, payloads and current destination of
the robots.

The algorithms we described in the previous section are completely distributed, and similarly,
the robots in the multi-robot team maintain individual world models. However, through communication,
the robots synchronize their information, so that they actually have a shared world model.

Robotics 2015, 4 382

We first describe how the demands are modeled and then discuss how the robots communicate to
synchronize their world model and how it behaves when there are errors in communication and/or latency
in messages.

6.1. Modeling Demands at Locations

In Section 4, we described how the demands are modeled per time step. In particular, we discussed
three resource replenishment models: Bernoulli, Poisson and stochastic logistic.

In each robot’s world model, it maintains a model of the number of demands in each location.
We previously discussed how the locations are finite in number in the multi-robot foraging problem
and how the approach is extended for the multi-robot item delivery problem. As such, the robot’s world
model maintains a discrete number of locations and models the number of demands at each location.

Recall at D̂(u),lj
t,i is robot ri’s model of D(u),lj

t , the number of unsatisfied demands at location lj at
time t. At the start of the run, i.e., t = 0, the robot assumes that D̂(u),lj

0,i = D(u),lj
0 = 0 for the Bernoulli

and Poisson replenishment models and D̂(u),lj
0,i = D(u),lj

0 =
Kj

2
for the stochastic logistic replenishment

model, where Kj is the maximum population of location lj .
Each replenishment model has associated parameters, and the robots are not aware of the true

parameters of the models:

1. Bernoulli replenishment: pj is not known, and the robots use a preset value p̂ for all locations;
2. Poisson replenishment: λj is not known, and the robots use a preset value λ̂ for all locations;
3. Stochastic logistic replenishment: The unconstrained population growth rate rj and maximum

population Kj is known, but the intensity of growth rate fluctuation σe is not known. The robots
assume that σ̂e = 0, i.e., there is no noise in the growth rate.

Hence, given the initial estimate D̂(u),lj
0,i , and the estimated model parameters (e.g., p̂ for the Bernoulli

replenishment model), the robot ri can predict the number of resources at lj for any future time t > 0.
During execution, the robot uses these estimates D̂(u),lj

t,i to make decisions as to which locations to visit,
e.g., Line 11 of Algorithm 1 and Line 4 of Algorithm 2.

When a robot makes an observation, i.e., when the distance between the robot and a location lj is
less than or equal to oi, the observational range of the robot, the robot is able to observe the number
of demands at lj . Suppose that robot ri observes location lj at time t. When that occurs, the robot ri
updates its model, such that D̂(u),lj

t,i = Oj , where Oj is the number of observed demands at lj . Note that
Oj may not be equal to D(u),lj

t if there is noise in observations, e.g., the robots are not able to perceive
the number of demands exactly.

6.2. Synchronizing the Shared World Model

In the previous subsection, we discussed how each robot maintains its own models of the demands
at the locations. In this subsection, we discuss how the robots communicate and synchronize their
world models.

We base our shared world model architecture from the CMurfs (Carnegie Mellon United Robots for
Soccer) RoboCup world model, which was described in detail in [49,50]. The key idea of the shared

Robotics 2015, 4 383

world model is that the robots individually maintain a copy of the world model, but communicate their
individual states periodically. Upon receiving packets from a teammate rj , the robot ri’s world model is
updated with regards to rj’s information.

In particular, for the multi-robot item delivery problem, each robot ri’s world model keeps track of:

• The global position of every robot in the multi-robot team;
• ∀lj ∈ L, D̂

lj
t,i, a model of the number of demands (satisfied and unsatisfied) at location lj at time t;

• For each robot ri, which demands have been assigned to ri;
• The current destination of every robot ri.

For the description below, we will use the perspective of a single robot ri on the team and how its
world model is updated and synchronized with information from its teammates.

ri tracks its global position through its localization system and maintains demand models D̂lj
t,i for each

location lj , as described in the previous subsection. When ri makes new observations of the number of
demands at locations, it updates its demand models D̂lj

t,i.
Every time step, the robot ri broadcasts information to teammates that are in communication range

C. In particular, ri broadcasts:

• ri’s global position;
• ri’s observations of demands at locations;
• ri’s assigned demands;
• ri’s current destination.

Note that the four components of ri’s broadcast message match the four components of the world
model by design. Hence, if all of the robots broadcast these messages, a union of their information
forms the complete world model of the multi-robot team.

Hence, if there is no limit to the communication range and no errors in transmission, then the world
models of the robots will be completely synchronized at all times. However, in practice, it is rarely the
case that communication is perfect. Robots may go in and out of communication range, and broadcast
packets may not be received in a timely fashion.

In our shared world model paradigm, we use UDP to send the broadcast packets, because we prefer
information to arrive on time, or not at all, compared to receiving old information via TCP. Timely
information is more useful, because the robots’ information typically does not change every time step,
so losing some packets does not have large effects on the shared world model. Further, because any
packet that is received will be timely, even if robot ri’s model is outdated with regards to rj’s information,
it will be fully up-to-date the moment communication between ri and rj is restored, i.e., a packet from
rj is received by ri.

To go one step further and to handle the limited communication range C, robots may also transmit
extra information in their broadcast packet, namely information received from teammate robots; in this
way, a robot ri may receive information from rk, even if ri and rk are not within communication range, by
using another robot rj to pass on its latest information from rk. However, doing so involves a caveat that
third-party information must be time-stamped, so that the receiving robot can discard old information,
e.g., if two robots rj and rm send information about rk, ri should only use the latest version of the
information. However, we do not consider this case in this article and leave it for future work.

Robotics 2015, 4 384

Thus, by communication via broadcast packets, the robots in the multi-robot team are able to maintain
a synchronized world model and plan effectively to solve the multi-robot item delivery problem.

7. Experiments and Results

In this section, we describe our comprehensive experiments to evaluate the efficacy of our distributed
multi-robot algorithms and shared world model. We first describe experiments in the multi-robot
foraging problem and next present results in the multi-robot item delivery problem.

7.1. Multi-Robot Foraging Experiments

As discussed in Section 4, we considered three resource replenishment models: Bernoulli, Poisson
and stochastic logistic. We evaluated the greedy rate (GR) algorithm in the Bernoulli and Poisson
replenishment models, against the benchmark of random (R) algorithm and continuous area sweeping
(CAS) [3]. Similarly, we evaluated the adaptive sleep (AS) and adaptive sleep with target change (ASTC)
algorithms in the stochastic logistic replenishment model, against the random (R) and sustainable
foraging (SF) [2] algorithms.

7.1.1. Experimental Setup

We created a 2D simulator in Java, which we first used in [1]. In the simulation, a discrete number of
locations are created following the replenishment models, and the robots start from a home location to
forage the resources.

For each of the replenishment models, we used the following parameters:

• Space of the world: N ×N ;
• Home location: center of the world;
• Number of locations: 20, uniformly distributed in the world;
• Number of robots: 1–10;
• Capacity of each robot: 1–20;
• Maximum speed of each robot: N

5
;

• Length of simulation: 1000 time steps;
• Full communication between robots to share the world model, i.e., perfect communicate with no

limits on range and no errors in communication.

One key difference between our experiments in this article, compared to our previous work in [1],
is that we consider the robots having a shared world model in this article, whereas in [1], we only
considered that the robots shared their destinations within a small communication range and did not
share additional information; instead, they relied on an information-gathering agent to discover and
share information among the multi-robot team. In this article, all robots share their information with the
entire team, and hence, the information-gathering agent is not required.

Furthermore, the size of the world, N ×N , is arbitrary, since the speed of the robot is set to N
5

.
The parameters for the robots’ model of the demands were set depending on the replenishment model:

Robotics 2015, 4 385

• For the Bernoulli replenishment model, p̂ = 0.3;
• For the Poisson replenishment model, λ̂ = 0.5;
• For the stochastic logistic replenishment model, σ̂e = 0.

When we created the locations, we sampled the true model parameters from normal distributions:

• Bernoulli model: pj ∼ N (0.3, 0.152);
• Poisson model: λj ∼ N (0.5, 0.42);
• Stochastic logistic model: σe ∈ {0.04, 0.08, 0.12, 0.16, 0.20}.

We chose these values so that the locations have a spread of true parameter values and so that the
resource generation was at a rate such that with 20 robots and 10 capacity each, the random algorithm
was able to forage almost all resources.

For each set of parameters, we ran 20 trials in simulation.

7.1.2. Results and Analysis

Figure 3 shows the results of the experiments with the Bernoulli replenishment models, and Figure 4
shows 2D slices of Figure 3, where the shaded regions indicate the standard deviations of the results.
We performed two-tailed Student’s t-tests for the graphs in Figure 4 and found that greedy rate
outperformed CAS with p = (4× 10−37, 3× 10−18, 1× 10−14, 3× 10−15) for capacities = (5, 10, 15, 20),
respectively. Similarly, greedy rate outperformed random with p = (1 × 10−72, 6 × 10−35, 2 × 10−25,

8× 10−22), respectively.
Figures 5 and 6 show the results of the experiments with the Poisson replenishment model in

3D and 2D, respectively. We also performed two-tailed Student’s t-tests for the graphs in Figure 6
and found that greedy rate outperformed CAS with p = (4 × 10−66, 7 × 10−28, 1 × 10−17, 3 × 10−14)

for capacities = (5, 10, 15, 20), respectively. Similarly, greedy rate outperformed random with
p = (3 × 10−95, 4 × 10−67, 4× 10−39, 1× 10−29), respectively.

 1 2 3 4 5 6 7 8 9 10
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 20

 40

 60

 80

 100
% Foraged

Greedy Rate
Random

CAS

Robots

Capacity

% Foraged

Figure 3. Foraging rate (as a % of total resources generated) using the Bernoulli
replenishment model.

Robotics 2015, 4 386

(a) (b)

(c) (d)

Figure 4. Foraging rate (as a % of total resources generated) using the Bernoulli
replenishment model, i.e., 2D slices of Figure 3. The shaded regions indicate the standard
deviations of the results. (a) Capacity = 5; (b) capacity = 10; (c) capacity = 15;
(d) capacity = 20.

 1 2 3 4 5 6 7 8 9 10
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 20

 40

 60

 80

 100
% Foraged

Greedy Rate
Random

CAS

Robots

Capacity

% Foraged

Figure 5. Foraging rate (as a % of total resources generated) using the Poisson
replenishment model.

Robotics 2015, 4 387

(a) (b)

(c) (d)

Figure 6. Foraging rate (as a % of total resources generated) using the Poisson replenishment
model, i.e., 2D slices of Figure 5. The shaded regions indicate the standard deviations of the
results. (a) Capacity = 5; (b) capacity = 10; (c) capacity = 15; (d) capacity = 20.

Thus, across the number of robots and capacities of the robots, our greedy rate algorithm
outperforms the CAS and random algorithms. As the number of robots approaches 10 and the capacity
approaches 20, all of the algorithms approach 100%, which is why we stopped the experiments at
those values.

It is interesting to note that the random algorithm performs better than CAS when the capacity of the
robots is low (<10), and the opposite is true when the capacity is greater than 10. One possible reason is
that the items at the locations replenish quickly enough that the random algorithm tends to find locations
with sufficient resources replenished at random, while the CAS algorithm overestimates the resources
available, so multiple robots visit the same locations.

Figure 7a–d show the results of the experiments with the stochastic logistic replenishment model,
where we varied the process noise σe. Figure 8 shows 2D slices of Figure 7b, with different capacities.
We performed two-tailed Student’s t-tests for the graphs in Figure 4 and found that our ASTC outperformed
SF with p = (7× 10−65, 2× 10−73, 5× 10−89, 9× 10−101) with capacity = (5, 10, 15, 20), respectively.
Similarly, ASTC outperformed random with p = (7× 10−19, 4× 10−27, 5× 10−44, 2× 10−57), respectively.

Robotics 2015, 4 388

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0

 5

 10

 15

 20

Foraging Rate

ASTC
AS
SF

Random

Robots

Capacity

Foraging Rate

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0

 5

 10

 15

 20

Foraging Rate

ASTC
AS
SF

Random

Robots

Capacity

Foraging Rate

(a) (b)

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0

 5

 10

 15

 20

Foraging Rate

ASTC
AS
SF

Random

Robots

Capacity

Foraging Rate

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0

 5

 10

 15

 20

Foraging Rate

ASTC
AS
SF

Random

Robots

Capacity

Foraging Rate

(c) (d)

Figure 7. Foraging rate using the stochastic logistic replenishment model, with varying
amounts of process noise. (a) σe = 0.08; (b) σe = 0.12; (c) σe = 0.16; (d) σe = 0.20.

Thus, our algorithm, ASTC, outperforms the SF and random algorithms across all of the variables
(number of robots, capacity of robots and process noise).

Our AS algorithm outperforms SF, but does more poorly than random in certain situations. When
the number of robots is low, randomly selecting a location to forage generally performs well, since the
locations have time to replenish the resources before another robots visits the location again.

Looking across the different values of process noise σe, it is interesting to note that our ASTC
algorithm is not significantly affected by σe, while the other algorithms generally do worse as
σe increases.

7.2. Multi-Robot Item Delivery Experiments

In this subsection, we discuss the experiments pertaining to the multi-robot item delivery problem.
We used the same 2D Java simulator as the previous subsection, and we highlight the differences in the
setup next.

Robotics 2015, 4 389

(a) (b)

(c) (d)

Figure 8. Foraging rate using the stochastic logistic replenishment model, where σe = 0.12,
i.e., 2D slices of Figure 7b. The shaded regions indicate the standard deviations of the results.
(a) Capacity = 5; (b) capacity = 10; (c) capacity = 15; (d) capacity = 20.

7.2.1. Experimental Setup

We defined a location spread Ns and placed locations in a grid in the N × N world, i.e., if N = 1

and Ns = 0.1, then we placed locations at (0, 0), (0.1, 0), . . . , (0.9, 1), (1, 1). The purpose of placing
locations in a grid fashion was to simulate that demands could occur at any location in the world, instead
of a small number of discrete locations.

We considered Ns ∈
{

N
20
, N

10

}
, so there were 400–1000 locations in our experiments, which is over

an order of magnitude larger than the foraging experiments in the previous subsection.
In addition, we only considered the Poisson demand generation model, since we believe that the

Poisson distribution is most closely related to real-life phenomenon in the item delivery domain.
The Poisson parameters λj for each location lj were sampled from a normal distribution, such that

λj ∼ N (µλ,σ
2
λ), where µλ ∈ {0.05, 0.10, 0.15} and σλ ∈ {0.04, 0.08, 0.12}. Furthermore, we set a hard

minimum, so that λj ≥ 0.01. The parameters for λj were selected so that there is a big spread of values,
and the minimum ensures that each location has some probability of generating demands.

Furthermore, we varied the speed of the robots, such that si ∈
{

1
5
N, 2

5
N, 3

5
N, 4

5
N,N

}
. For each

simulation experiment, all of the robots had the same maximum speed si, i.e., ∀i, j ∈ 1, . . . , n, si = sj .

Robotics 2015, 4 390

7.2.2. Results and Analysis

Figure 9a,b show the results of the experiments with the Poisson demand generation model. Our GRIC
algorithm consistently serves the highest number of demands, regardless of number of robots, robot
capacity or robot speed. Figures 10 and 11 show 2D segments of Figure 9a,b respectively (where the
shaded regions around the lines show the standard deviations of the results) and demonstrate that GRIC
outperforms GR, random and CAS.

 1 2 3 4 5 6 7 8 9 10 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
% Served

GRIC
Random

Greedy Rate
CAS

Robots

Capacity

% Served

 1 2 3 4 5 6 7 8 9 10 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
% Served

GRIC
Random

Greedy Rate
CAS

Robots

Speed

% Served

(a) (b)

Figure 9. Demand serving rate using a Poisson demand generation model.

(a) (b)

(c) (d)

Figure 10. Demand serving rate using a Poisson demand generation model, i.e., 2D
slices of Figure 9a. The shaded regions indicate the standard deviations of the results.
(a) Capacity = 5; (b) capacity = 10; (c) capacity = 15; (d) capacity = 20.

Robotics 2015, 4 391

(a) (b)

(c) (d)

Figure 11. Demand serving rate using a Poisson demand generation model, i.e., 2D
slices of Figure 9b. The shaded regions indicate the standard deviations of the results.
(a) Speed = 0.2; (b) speed = 0.4; (c) speed = 0.6; (d) speed = 0.8.

Surprisingly, the random algorithm outperforms both the CAS and greedy rate algorithms by a large
margin despite not taking advantage of information in the shared world model. The main reason for
this phenomenon is that the random algorithm visits locations randomly, so probabilistically, a long
time elapses between two visits to the same location. As a result, the number of unserved demands
at the locations are likely to be high (and greater than the robot’s capacity), and hence, the random
algorithm maximizes the robot’s capacity. In contrast, CAS and greedy rate use the expected number of
demands at the location, and if the actual number of demands is below expectation, then the algorithms
perform poorly.

Figure 12 shows the effect of increasing the mean µλ of the normal distribution from which the
Poisson parameters λj of the demand generation model are drawn, where the shaded regions show the
standard deviations of the results. As µλ rises, more demands are generated in the world. Greedy rate and
CAS manage to keep pace with the rise in generated demands by serving more demands, hence roughly
the same percentage gets served. However, the percentage of demands served by the GRIC and random
algorithms falls.

Robotics 2015, 4 392

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15

%
 S

e
rv

e
d

GRIC
Random

Greedy Rate
CAS

Figure 12. Effect of demand generation rate on the percentage of demands served, where
the shaded regions show the standard deviations of the results.

One possible reason is that the team of robots is already operating near its maximum capacity when
serving demands under the GRIC and random algorithms. Hence, when the rate of demand generation
rises, the GRIC and random algorithms cannot match the rise with a proportionate increase in the number
of demands served. Conversely, the comparatively poor performance of greedy rate and CAS when the
rate of demand generation is low may explain the presence of excess capacity available to serve more
demands when the rate of demand generation is increased.

8. Conclusions

We formally introduced and defined the multi-robot item delivery problem and described how the
multi-robot foraging problem is a special case of the item delivery problem. In the item delivery problem,
demands are generated probabilistically over time, and the goal is to maximize the number of items
delivered. Similarly, in the multi-robot foraging problem, resources replenish probabilistically over time,
and the goal is to maximize the rate of resources foraged.

We presented three models of resource replenishment for the multi-robot foraging problem: Bernoulli,
Poisson and the stochastic logistic replenishment model. We described how the Poisson replenishment
model is best suited for the multi-robot item delivery problem and how the model is applied to the item
delivery problem.

We contributed multi-robot foraging algorithms that run in a distributed manner in the multi-robot
team and detailed how these algorithms also apply to the multi-robot item delivery problem. We also
contributed a distributed multi-robot algorithm that is well suited for the item delivery problem.
The robots share a common world model, which is also maintained in a distributed fashion and allows the
team to assign tasks without negotiation, in a manner that is robust to communication delays and errors.

We evaluated our algorithms in comprehensive simulations and benchmarked against existing
algorithms from the multi-robot foraging literature. We demonstrated that our algorithms outperformed

Robotics 2015, 4 393

the benchmark over a variety of parameters: e.g., the number of robots in the team and the capacities of
the robots.

As future work, we are implementing the distributed algorithms on actual robot platforms, with the
goal of deploying the robots during an actual cocktail party. Furthermore, we are considering the case
where the demand generation model type (i.e., Bernoulli, Poisson or stochastic logistic) is initially
unknown and the robots have to adapt their algorithms based on the observations and guesses on the
true model type.

Acknowledgments

This work was supported by the Agency for Science, Technology and Research (A*STAR)
Computational Resource Centre through the use of its high performance computing facilities.

Author Contributions

S.L. formally defined the problem and developed the multi-robot algorithms and shared world model.
R.Y. and K.P.T. developed the stochastic logistic model. S.L., K.P.T. and M.L. designed the experiments
and analyzed the results.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Liemhetcharat, S.; Yan, R.; Tee, K.P. Continuous foraging and information gathering in a
multi-agent team. In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems, Istanbul, Turkey, 4–8 May 2015; pp. 1325–1333.

2. Song, Z.; Vaughan, R. Sustainable robot foraging: Adaptive fine-grained multi-robot task
Allocation for Maximum Sustainable Yield of Biological Resources. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013;
pp. 3309–3316.

3. Ahmadi, M.; Stone, P. Continuous area sweeping: A task definition and initial approach.
In Proceedings of the International Conference on Advanced Robotics, Seattle, WA, USA,
18–20 July 2005; pp. 316–323.

4. Gerkey, B.P.; Mataric, M.J. A formal analysis and taxonomy of task allocation in multi-robot
systems. J. Robot. Res. 2004, 23, 939–954.

5. Liemhetcharat, S.; Veloso, M. Modeling and learning synergy for team formation with
heterogeneous agents. In Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems, Valencia, Spain, 4–8 June 2012; pp. 365–375.

6. Liemhetcharat, S.; Veloso, M. Weighted synergy graphs for effective team formation with
heterogeneous Ad Hoc Agents. J. Artif. Intell. 2014, 208, 41–65.

Robotics 2015, 4 394

7. Liemhetcharat, S.; Veloso, M. Weighted synergy graphs for role assignment in Ad Hoc
Heterogeneous Robot Teams. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 5247–5254.

8. Liemhetcharat, S.; Veloso, M. synergy graphs for configuring robot team members. In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems, Saint Paul, MN,
USA, 6–10 May 2013; pp. 111–118.

9. Liemhetcharat, S.; Veloso, M. Forming an effective multi-robot team robust to failures.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Tokyo, Japan, 3–7 November 2013.

10. Lerman, K.; Jones, C.; Galstyan, A.; Mataric, M.J. Analysis of dynamic task allocation in
multi-robot systems. J. Robot. Res. 2006, 25, 225–241.

11. Shell, D.A.; Mataric, M.J. Onforaging strategies for large-scale multi-robot systems.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Beijing, China, 9–15 October 2006; pp. 2717–2723.

12. Modi, P.; Shen, W.; Tambe, M.; Yokoo, M. An asynchronous complete method for distributed
constraint optimization. In Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems, Melbourne, Australia, 14–18 July 2003.

13. Couceiro, M.; Rocha, R.; Figueiredo, C.; Luz, J.; Ferreira, N. Multi-robot foraging based on
Darwin’s survival of the fittest. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 801–806.

14. Dorigo, M.; Birattari, M. Ant colony optimization. In Encyclopedia of Machine Learning; Springer
Science and Business Media: Berlin, Germany, 2011; pp. 37–40.

15. Panait, L.; Luke, S. A pheromone-based utility model for collaborative foraging. In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems, New York, NY,
USA, 23 July 2004; pp. 36–43.

16. Liu, W.; Winfield, A.; Sa, J.; Chen, J.; Dou, L. Towards energy optimization: Emergent task
allocation in a swarm of foraging robots. Adapt. Behav. 2007, 15, 289–305.

17. Song, Z.; Sadat, S.; Vaughan, R. MO-LOST: Adaptive ant trail untangling in multi-objective
multi-colony robot foraging. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems, Valencia, Spain, 4–8 June 2012; pp. 1199–1200.

18. Hoff, N.; Sagoff, A.; Wood, R.; Nagpal, R. Two foraging algorithms for robot swarms using
only local communication. In Proceedings of the International Conference on Robotics and
Biomimetics, Tianjin, China, 14–18 December 2010; pp. 123–130.

19. Lemmens, N.; Jong, S.; Tuyls, K.; Nowe, A. Bee behaviour in multi-agent systems. In
Adaptive Agents and Multi-Agent Systems III; Springer Berlin Heidelberg: Berlin, Germany, 2008;
pp. 145–156.

20. Alers, S.; Bloembergen, D.; Hennes, D.; de Jong, S.; Kaisers, M.; Lemmens, N.; Tuyls, K.;
Weiss, G. Bee-inspired foraging in an embodied swarm. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems, Taipei, Taiwan, 2–6 May 2011;
pp. 1311–1312.

Robotics 2015, 4 395

21. Rosenfeld, A.; Kaminka, G.A.; Kraus, S. A study of scalability properties in robotic teams.
In Coordination of Large-Scale Multiagent Systems; Springer: New York, NY, USA, 2006;
pp. 27–51.

22. Lerman, K.; Galstyan, A. Mathematical model of foraging in a group of robots: Effect of
interference. Auton. Robot. 2002, 13, 127–141.

23. Schneider-Fontan, M.; Mataric, M.J. Territorial multi-robot task division. IEEE Trans. Robot. Autom.

1998, 14, 815–822.
24. Jager, M.; Nebel, B. Dynamic decentralized area partitioning for cooperating cleaning robots.

In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’02,
Washington, WA, USA, 11–15 May 2002; pp. 3577–3582.

25. Sander, P.V.; Peleshchuk, D.; Grosz, B.J. A scalable, distributed algorithm for efficient task
allocation. In Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems, Bologna, Italy, 15–19 July 2002; pp. 1191–1198.

26. Rosenfeld, A.; Kaminka, G.A.; Kraus, S. Adaptive robot coordination using interference metrics.
In Proceedings of the ECAI, Valencia, Spain, 22–27 August 2004; pp. 910-916.

27. Kaminka, G.; Erusalimchik, D.; Kraus, S. Adaptive multi-robot coordination: A game-theoretic
perspective. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation
(ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 328–334.

28. Rosenfeld, A.; Kaminka, G.A.; Kraus, S.; Shehory, O. A study of mechanisms for improving
robotic group performance. Artif. Intell. 2008, 172, 633–655.

29. Dias, M.B.; Stentz, A. Multi-robot exploration controlled by a market economy. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Washington, WA,
USA, 11–15 May 2002; pp. 2714–2720.

30. Dias, M.B. TraderBots: A New Paradigm for Robust and Efficient Multirobot Coordination
in Dynamic Environments. Ph.D. Thesis, The Robotics Institute, Carnegie Mellon
University,Pittsburgh, PA, USA, 2004.

31. Gerkey, B.P.; Matari, M.J. Sold!: Auction methods for multirobot coordination. IEEE Trans.
Robot. Autom. 2002, 18, 758–768.

32. Choi, H.L.; Brunet, L.; How, J.P. Consensus-based decentralized auctions for robust task allocation.
IEEE Trans. Robot. 2009, 25, 912–926.

33. Vig, L.; Adams, J. Market-based multi-robot coalition formation. In Proceedings of the
International Symposium on Distributed Autonomous Robotics Systems, Minneapolis, MN, USA,
12–14 July 2006; pp. 227–236.

34. Akbarimajd, A.; Simzan, G. Application of artificial capital market in task allocation in multi-robot
foraging. Int. J. Comput. Intell. Syst. 2013, 7, 401–417.

35. Akbarimajd, A.; Jond, H. Multi-Robot Foraging based on Contract Net Protocol. J. Adv. Comput. Res.
2014, 5, 61–67.

36. Heap, B.; Pagnucco, M. Repeated auctions for reallocation of tasks with pickup and delivery upon
robot failure. In PRIMA 2013: Principles and Practice of Multi-Agent Systems; Springer: New
York, NY, USA, 2013; pp. 461–469.

Robotics 2015, 4 396

37. Pini, G.; Brutschy, A.; Pinciroli, C.; Dorigo, M.; Birattari, M. Autonomous task partitioning in
robot foraging: An approach based on cost estimation. Adapt. Behav. 2013, 21, 118–136.

38. Ozgul, E.; Liemhetcharat, S.; Low, K. Multi-Agent Ad Hoc Team partitioning by observing and
modeling single-agent performance. In Proceedings of the Asia-Pacific Signal and Information
Processing Association Conference, Siem Reap, Cambodia, 9–12 December 2014.

39. Castello, E.; Yamamoto, T.; Nakamura, Y.; Ishiguro, H. Foraging optimization in swarm robotic
systems based on an adaptive response threshold model. Adv. Robot. 2014, 28, 1343–1356.

40. Coltin, B.; Veloso, M. Scheduling for transfers in pickup and delivery problems with very large
neighborhood search. In Proceedings of the International Conference on Artificial Intelligence,
Las Vegas, NV, USA, 21–24 July 2014; pp. 2250–2256.

41. Veloso, M.; Biswas, J.; Coltin, B.; Rosenthal, S.; Kollar, T.; Mericli, C.; Samadi, M.; Brandao, S.;
Ventura, R. CoBots: Collaborative Robots Servicing Multi-Floor Buildings. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal,
7–12 October 2012; pp. 5446–5447.

42. Veloso, M.; Biswas, J.; Coltin, B.; Rosenthal, S.; Brandao, S.; Mericli, T.; Ventura, R.
Symbiotic-autonomous service robots for user-requested tasks in a multi-floor building.
In Proceedings of the IROS Workshop on Cognitive Assitive Systems, Algarve, Portugal,
7 October, 2012.

43. Cordeau, J.; Laporte, G. The dial-a-ride problem: Models and algorithms. Ann. Op. Res. 2007,
153, 29–46.

44. Ahmadi, M.; Stone, P. A multi-robot system for continuous area sweeping tasks. In Proceedings of
the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May
2006; pp. 1724–1729.

45. Agmon, N.; Kaminka, G.; Kraus, S. Multi-robot adversarial patrolling: Facing a full-knowledge
opponent. J. Artif. Intell. Res. 2011, 412, 5771–5788.

46. Elmaliach, Y.; Agmon, N.; Kaminka, G. Multi-robot area patrol under frequency constraints. Ann.
Math. Artif. Intell. 2009, 57, 292–320.

47. Yoshida, E.; Arai, T.; Ota, J.; Miki, T. Effect of grouping in local communication system of multiple
mobile robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Munich, Germany, 12–16 September 1994; pp. 808–815.

48. Hakoyama, H.; Iwasa, Y. Extinction risk of a density-dependent population estimated from a time
series of population size. J. Theor. Biol. 2000, 204, 337–359.

49. Coltin, B.; Liemhetcharat, S.; Meriçli, Ç.; Tay, J.; Veloso, M. Multi-humanoid world modeling
in standard platform robot soccer. In Proceedings of the IEEE-RAS International Conference on
Humanoid Robots, Nashville, TN, USA, 6–8 December 2010.

Robotics 2015, 4 397

50. Liemhetcharat, S.; Coltin, B.; Veloso, M. Vision-based cognition of a humanoid robot in standard
platform robot soccer. In Proceedings of the International Workshop on Humanoid Soccer Robots,
Nashville, TN, USA, 7 December 2010; pp. 47–52.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Related Work
	Problem Definition and Approach
	Motivating Scenario
	Multi-Robot Item Delivery Problem Definition
	Comparison to Multi-Robot Foraging Problem
	Overview of Approach

	Demand Generation Models
	Resource Replenishment for Multi-Robot Foraging
	Bernoulli Replenishment
	Poisson Replenishment
	Stochastic Logistic Replenishment

	Applying Resource Replenishment Models to Item Delivery

	Distributed Algorithms for Item Delivery
	Multi-Robot Foraging Algorithms
	Random
	Best Static Loop
	Greedy Rate
	Adaptive Sleep
	Adaptive Sleep with Target Change

	Adapting the Foraging Algorithms for Item Delivery

	Maintaining a Model of the World
	Modeling Demands at Locations
	Synchronizing the Shared World Model

	Experiments and Results
	Multi-Robot Foraging Experiments
	Experimental Setup
	Results and Analysis

	Multi-Robot Item Delivery Experiments
	Experimental Setup
	Results and Analysis

	Conclusions

